Simple tutorials on Pytorch DDP training

Overview

pytorch-distributed-training

Distribute Dataparallel (DDP) Training on Pytorch

Features

Good Notes

分享一些网上优质的笔记

TODO

  • 完成DP和DDP源码解读笔记(当前进度50%)
  • 修改代码细节, 复现实验结果

Quick start

想直接运行查看结果的可以执行以下命令, 注意一定要用--ip--port来指定主机的ip地址以及空闲的端口,否则可能无法运行

$ python dataparallel.py --gpu 0,1,2,3
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址

  • --port=int, e.g --port=23456 来指定启动端口号

  • --batch_size=int, e.g --batch_size=128 设定训练batch_size

  • distributed_gradient_accumulation.py

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_apex.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号
  • --grad_accu_steps=int, e.g --grad_accu_steps=4' 来指定gradient_step

Comparison

结果不够准确,GPU状态不同结果可能差异较大

默认情况下都使用SyncBatchNorm, 这会导致执行速度变慢一些,因为需要增加进程之间的通讯来计算BatchNorm, 但有利于保证准确率

Concepts

  • apex
  • DP: DataParallel
  • DDP: DistributedDataParallel

Environments

  • 4 × 2080Ti
model dataset training method time(seconds/epoch) Top-1 accuracy
resnet18 cifar100 DP 20s
resnet18 cifar100 DP+apex 18s
resnet18 cifar100 DDP 16s
resnet18 cifar100 DDP+apex 14.5s

Basic Concept

  • group: 表示进程组,默认情况下只有一个进程组。
  • world size: 全局进程个数
    • 比如16张卡单卡单进程: world size = 16
    • 8卡单进程: world size = 1
    • 只有当连接的进程数等于world size, 程序才会执行
  • rank: 进程序号,用于进程间通讯,表示进程优先级,rank=0表示主进程
  • local_rank: 进程内,GPU编号,非显示参数,由torch.distributed.launch内部指定,rank=3, local_rank=0 表示第3个进程的第1GPU

Usage 单机多卡

1. 获取当前进程的index

pytorch可以通过torch.distributed.lauch启动器,在命令行分布式地执行.py文件, 在执行的过程中会将当前进程的index通过参数传递给python

import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--local_rank', default=-1, type=int,
                    help='node rank for distributed training')
args = parser.parse_args()
print(args.local_rank)

2. 定义 main_worker 函数

主要的训练流程都写在main_worker函数中,main_worker需要接受三个参数(最后一个参数optional):

def main_worker(local_rank, nprocs, args):
    training...
  • local_rank: 接受当前进程的rank值,在一机多卡的情况下对应使用的GPU号
  • nprocs: 进程数量
  • args: 自己定义的额外参数

main_worker,相当于你每个进程需要运行的函数(每个进程执行的函数内容是一致的,只不过传入的local_rank不一样)

3. main_worker函数中的整体流程

main_worker函数中完整的训练流程

import torch
import torch.distributed as dist
import torch.backends.cudnn as cudnn
def main_worker(local_rank, nprocs, args):
    args.local_rank = local_rank
    # 分布式初始化,对于每个进程来说,都需要进行初始化
    cudnn.benchmark = True
    dist.init_process_group(backend='nccl', init_method='tcp://ip:port', world_size=nprocs, rank=local_rank)
    # 模型、损失函数、优化器定义
    model = ...
    criterion = ...
    optimizer = ...
    # 设置进程对应使用的GPU
    torch.cuda.set_device(local_rank)
    model.cuda(local_rank)
    # 使用分布式函数定义模型
    model = model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank])
    
    # 数据集的定义,使用 DistributedSampler
    mini_batch_size = batch_size / nprocs # 手动划分 batch_size to mini-batch_size
    train_dataset = ...
    train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                              sampler=train_sampler)
    
    test_dataset = ...
    test_sampler = torch.utils.data.distributed.DistributedSampler(test_dataset)
    testloader = torch.utils.data.DataLoader(train_dataset, batch_size=mini_batch_size, num_workers=..., pin_memory=..., 
                                             sampler=test_sampler) 
    
    # 正常的 train 流程
    for epoch in range(300):
       model.train()
       for batch_idx, (images, target) in enumerate(trainloader):
          images = images.cuda(non_blocking=True)
          target = target.cuda(non_blocking=True)
          ...
          pred = model(images)
          loss = loss_function(pred, target)
          ...
          optimizer.zero_grad()
          loss.backward()
          optimizer.step()

4. 定义main函数

import argparse
import torch
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 执行 main_worker
    main_worker(args.local_rank, args.nprocs, args)

if __name__ == '__main__':
    main()

5. Command Line 启动

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 distributed.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

参数说明:

  • --nnodes 表示机器的数量
  • --node_rank 表示当前的机器
  • --nproc_per_node 表示每台机器上的进程数量

参考 distributed.py

6. torch.multiprocessing

使用torch.multiprocessing来解决进程自发控制可能产生问题,这种方式比较稳定,推荐使用

import argparse
import torch
import torch.multiprocessing as mp

parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--local_rank', default=-1, type=int, help='node rank for distributed training')
parser.add_argument('--batch_size','--batch-size', default=256, type=int)
parser.add_argument('--lr', default=0.1, type=float)

def main_worker(local_rank, nprocs, args):
    ...

def main():
    args = parser.parse_args()
    args.nprocs = torch.cuda.device_count()
    # 将 main_worker 放入 mp.spawn 中
    mp.spawn(main_worker, nprocs=args.nprocs, args=(args.nprocs, args))

if __name__ == '__main__':
    main()

参考 distributed_mp.py 启动方式如下:

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python distributed_mp.py
  • --ip=str, e.g --ip='10.24.82.10' 来指定主进程的ip地址
  • --port=int, e.g --port=23456 来指定启动端口号

Implemented Work

参考的文章如下(如果有文章没有引用,但是内容差不多的,可以提issue给我,我会补上,实在抱歉):

Owner
Ren Tianhe
Ren Tianhe
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum

CO-PILOT CO-PILOT: COllaborative Planning and reInforcement Learning On sub-Task curriculum, NeurIPS 2021, Shuang Ao, Tianyi Zhou, Guodong Long, Qingh

Shuang Ao 1 Feb 18, 2022
BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands.

BigbrotherBENL - Face recognition on the Big Brother episodes in Belgium and the Netherlands. Keeping statistics of whom are most visible and recognisable in the series and wether or not it has an im

Frederik 2 Jan 04, 2022
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Principled Detection of Out-of-Distribution Examples in Neural Networks

ODIN: Out-of-Distribution Detector for Neural Networks This is a PyTorch implementation for detecting out-of-distribution examples in neural networks.

189 Nov 29, 2022
This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). This codebase is implemented using JAX, buildin

naruya 132 Nov 21, 2022
Differential rendering based motion capture blender project.

TraceArmature Summary TraceArmature is currently a set of python scripts that allow for high fidelity motion capture through the use of AI pose estima

William Rodriguez 4 May 27, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Hippocampal segmentation using the UNet network for each axis

Hipposeg Hippocampal segmentation using the UNet network for each axis, inspired by https://github.com/MICLab-Unicamp/e2dhipseg Red: False Positive Gr

Juan Carlos Aguirre Arango 0 Sep 02, 2021
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023