Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Overview

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Build Status

By Andres Milioto @ University of Bonn.

(for the new Pytorch version, go here)

Image of cityscapes Cityscapes Urban Scene understanding.

Image of Persons Person Segmentation

Image of cwc Crop vs. Weed Semantic Segmentation.

Description

This code provides a framework to easily add architectures and datasets, in order to train and deploy CNNs for a robot. It contains a full training pipeline in python using Tensorflow and OpenCV, and it also some C++ apps to deploy a frozen protobuf in ROS and standalone. The C++ library is made in a way which allows to add other backends (such as TensorRT and MvNCS), but only Tensorflow and TensorRT are implemented for now. For now, we will keep it this way because we are mostly interested in deployment for the Jetson and Drive platforms, but if you have a specific need, we accept pull requests!

The networks included is based of of many other architectures (see below), but not exactly a copy of any of them. As seen in the videos, they run very fast in both GPU and CPU, and they are designed with performance in mind, at the cost of a slight accuracy loss. Feel free to use it as a model to implement your own architecture.

All scripts have been tested on the following configurations:

  • x86 Ubuntu 16.04 with an NVIDIA GeForce 940MX GPU (nvidia-384, CUDA9, CUDNN7, TF 1.7, TensorRT3)
  • x86 Ubuntu 16.04 with an NVIDIA GTX1080Ti GPU (nvidia-375, CUDA9, CUDNN7, TF 1.7, TensorRT3)
  • x86 Ubuntu 16.04 and 14.04 with no GPU (TF 1.7, running on CPU in NHWC mode, no TensorRT support)
  • Jetson TX2 (full Jetpack 3.2)

We also provide a Dockerfile to make it easy to run without worrying about the dependencies, which is based on the official nvidia/cuda image containing cuda9 and cudnn7. In order to build and run this image with support for X11 (to display the results), you can run this in the repo root directory (nvidia-docker should be used instead of vainilla docker):

  $ docker pull tano297/bonnet:cuda9-cudnn7-tf17-trt304
  $ nvidia-docker build -t bonnet .
  $ nvidia-docker run -ti --rm -e DISPLAY -v /tmp/.X11-unix:/tmp/.X11-unix -v $HOME/.Xauthority:/home/developer/.Xauthority -v /home/$USER/data:/shared --net=host --pid=host --ipc=host bonnet /bin/bash

-v /home/$USER/data:/share can be replaced to point to wherever you store the data and trained models, in order to include the data inside the container for inference/training.

Deployment

  • /deploy_cpp contains C++ code for deployment on robot of the full pipeline, which takes an image as input and produces the pixel-wise predictions as output, and the color masks (which depend on the problem). It includes both standalone operation which is meant as an example of usage and build, and a ROS node which takes a topic with an image and outputs 2 topics with the labeled mask and the colored labeled mask.

  • Readme here

Training

  • /train_py contains Python code to easily build CNN Graphs in Tensorflow, train, and generate the trained models used for deployment. This way the interface with Tensorflow can use the more complete Python API and we can easily work with files to augment datasets and so on. It also contains some apps for using models, which includes the ability to save and use a frozen protobuf, and to use the network using TensorRT, which reduces the time for inference when using NVIDIA GPUs.

  • Readme here

Pre-trained models

These are some models trained on some sample datasets that you can use with the trainer and deployer, but if you want to take time to write the parsers for another dataset (yaml file with classes and colors + python script to put the data into the standard dataset format) feel free to create a pull request.

If you don't have GPUs and the task is interesting for robots to exploit, I will gladly train it whenever I have some free GPU time in our servers.

  • Cityscapes:

    • 512x256 Link
    • 768x384 Link (inception-like model)
    • 768x384 Link (mobilenets-like model)
    • 1024x512 Link
  • Synthia:

  • Persons (+coco people):

  • Crop-Weed (CWC):

License

This software

Bonnet is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

Bonnet is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

Pretrained models

The pretrained models with a specific dataset keep the copyright of such dataset.

Citation

If you use our framework for any academic work, please cite its paper.

@InProceedings{milioto2019icra,
author = {A. Milioto and C. Stachniss},
title = {{Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics using CNNs}},
booktitle = {Proc. of the IEEE Intl. Conf. on Robotics \& Automation (ICRA)},
year = 2019,
codeurl = {https://github.com/Photogrammetry-Robotics-Bonn/bonnet},
videourl = {https://www.youtube.com/watch?v=tfeFHCq6YJs},
}

Our networks are strongly based on the following architectures, so if you use them for any academic work, please give a look at their papers and cite them if you think proper:

Other useful GitHub's:

  • OpenAI Checkpointed Gradients. Useful implementation of checkpointed gradients to be able to fit big models in GPU memory without sacrificing runtime.
  • Queueing tool: Very nice queueing tool to share GPU, CPU and Memory resources in a multi-GPU environment.
  • Tensorflow_cc: Very useful repo to compile Tensorflow either as a shared or static library using CMake, in order to be able to compile our C++ apps against it.

Contributors

Milioto, Andres

Special thanks to Philipp Lottes for all the work shared during the last year, and to Olga Vysotka and Susanne Wenzel for beta testing the framework :)

Acknowledgements

This work has partly been supported by the German Research Foundation under Germany's Excellence Strategy, EXC-2070 - 390732324 (PhenoRob). We also thank NVIDIA Corporation for providing a Quadro P6000 GPU partially used to develop this framework.

TODOs

  • Merge Crop-weed CNN with background knowledge into this repo.
  • Make multi-camera ROS node that exploits batching to make inference faster than sequentially.
  • Movidius Neural Stick C++ backends (plus others as they become available).
  • Inference node to show the classes selectively (e.g. with some qt visual GUI)
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Time-stretch audio clips quickly with PyTorch (CUDA supported)! Additional utilities for searching efficient transformations are included.

Kento Nishi 22 Jul 07, 2022
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving

RTS3D: Real-time Stereo 3D Detection from 4D Feature-Consistency Embedding Space for Autonomous Driving (AAAI2021). RTS3D is efficiency and accuracy s

71 Nov 29, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Repo público onde postarei meus estudos de Python, buscando aprender por meio do compartilhamento do aprendizado!

Seja bem vindo à minha repo de Estudos em Python 3! Este é um repositório criado por um programador amador que estuda tópicos de finanças, estatística

32 Dec 24, 2022
implicit displacement field

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

extrinsic2pyramid Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space Intro A very simple and straightforward modu

JEONG HYEONJIN 106 Dec 28, 2022
The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines.

The DL Streamer Pipeline Zoo is a catalog of optimized media and media analytics pipelines. It includes tools for downloading pipelines and their dependencies and tools for measuring their performace

8 Dec 04, 2022
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023