A dataset for online Arabic calligraphy

Overview

Calliar

Calliar is a dataset for Arabic calligraphy. The dataset consists of 2500 json files that contain strokes manually annotated for Arabic calligraphy. This repository contains the dataset for the following paper :

Calliar: An Online Handwritten Dataset for Arabic Calligraphy
Zaid Alyafeai, Maged S. Al-shaibani, Mustafa Ghaleb, Yousif Ahmed Al-Wajih
https://arxiv.org/abs/2106.10745

Abstract: Calligraphy is an essential part of the Arabic heritage and culture. It has been used in the past for the decoration of houses and mosques. Usually, such calligraphy is designed manually by experts with aesthetic insights. In the past few years, there has been a considerable effort to digitize such type of art by either taking a photo of decorated buildings or drawing them using digital devices. The latter is considered an online form where the drawing is tracked by recording the apparatus movement, an electronic pen for instance, on a screen. In the literature, there are many offline datasets collected with a diversity of Arabic styles for calligraphy. However, there is no available online dataset for Arabic calligraphy. In this paper, we illustrate our approach for the collection and annotation of an online dataset for Arabic calligraphy called Calliar that consists of 2,500 sentences. Calliar is annotated for stroke, character, word and sentence level prediction.

Stats

Dataset # of Samples # of Words # of Chars # of Strokes
Train 2,000 6,065 24,722 36,561
Valid 250 738 2,946 4,410
Test 250 753 3,052 4,601

Dataset Formats

Mainly, we have two basic formats.

.json

Each .json file contains a list of strokes. Each list is a dictionary of the stroke character and the list of points. Each composite character like ت is mapped into a list of primitive strokes i.e ..ٮ . Refer to the paper and to chars.py for more details on the mapping.

.npz

The compressed format of the dataset dataset.npz is only 8.6 MB and uses the Ramer-Douglas-Peucker Algorithm to decrease the number of points per stroke. The python library rdp was used for such task. The .npz format follows the same approach as QuickDraw.

Visualization

The vis.py file contains a list of python methods for easily visualizing the dataset. Here are two examples for drawing a sample json file and creating an animation.

import glob
import matplotlib.pyplot as plt 
import json 
from IPython.core.display import display, HTML, Video
from vis import *

## show an image of the strokes 
drawing = json.load(open(json_path))
print(get_annotation(json_path))
data = convert_3d(drawing)
draw_strokes(data, stroke_width = 2, crop = True)

## create an animation. 
create_animation(json_path)
Video("tmp/video.mp4")

Samples

sample_calliar_image_3

Animation

video_twitter.mp4
video_twitter_1.mp4
video_twitter_2.mp4
video_twitter_3.mp4

Citation

@misc{alyafeai2021calliar,
      title={Calliar: An Online Handwritten Dataset for Arabic Calligraphy}, 
      author={Zaid Alyafeai and Maged S. Al-shaibani and Mustafa Ghaleb and Yousif Ahmed Al-Wajih},
      year={2021},
      eprint={2106.10745},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks.

Self Supervised Learning with Fastai Implementation of popular SOTA self-supervised learning algorithms as Fastai Callbacks. Install pip install self-

Kerem Turgutlu 276 Dec 23, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Code for Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021) Hang Zhou, Yasheng Sun, Wayne Wu, Chen Cha

Hang_Zhou 628 Dec 28, 2022
This project is used for the paper Differentiable Programming of Isometric Tensor Network

This project is used for the paper "Differentiable Programming of Isometric Tensor Network". (arXiv:2110.03898)

Chenhua Geng 15 Dec 13, 2022
PyTorch implementation of Trust Region Policy Optimization

PyTorch implementation of TRPO Try my implementation of PPO (aka newer better variant of TRPO), unless you need to you TRPO for some specific reasons.

Ilya Kostrikov 366 Nov 15, 2022
Node Dependent Local Smoothing for Scalable Graph Learning

Node Dependent Local Smoothing for Scalable Graph Learning Requirements Environments: Xeon Gold 5120 (CPU), 384GB(RAM), TITAN RTX (GPU), Ubuntu 16.04

Wentao Zhang 15 Nov 28, 2022
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
A PaddlePaddle version image model zoo.

Paddle-Image-Models English | 简体中文 A PaddlePaddle version image model zoo. Install Package Install by pip: $ pip install ppim Install by wheel package

AgentMaker 131 Dec 07, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

NCNN implementation of Real-ESRGAN. Real-ESRGAN aims at developing Practical Algorithms for General Image Restoration.

Xintao 593 Jan 03, 2023
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023