A unofficial pytorch implementation of PAN(PSENet2): Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Overview

Efficient and Accurate Arbitrary-Shaped Text Detection with Pixel Aggregation Network

Requirements

  • pytorch 1.1+
  • torchvision 0.3+
  • pyclipper
  • opencv3
  • gcc 4.9+

Download

PAN_resnet18_FPEM_FFM and PAN_resnet18_FPEM_FFM on icdar2015:

the updated model(resnet18:78.8,shufflenetv2: 72.4,lr:le-3) is not the best model

google drive

Data Preparation

train: prepare a text in the following format, use '\t' as a separator

/path/to/img.jpg path/to/label.txt
...

val: use a folder

img/ store img
gt/ store gt file

Train

  1. config the train_data_path,val_data_pathin config.json
  2. use following script to run
python3 train.py

Test

eval.py is used to test model on test dataset

  1. config model_path, img_path, gt_path, save_path in eval.py
  2. use following script to test
python3 eval.py

Predict

predict.py is used to inference on single image

  1. config model_path, img_path, in predict.py
  2. use following script to predict
python3 predict.py

The project is still under development.

Performance

ICDAR 2015

only train on ICDAR2015 dataset

Method image size (short size) learning rate Precision (%) Recall (%) F-measure (%) FPS
paper(resnet18) 736 x x x 80.4 26.1
my (ShuffleNetV2+FPEM_FFM+pse扩张) 736 1e-3 81.72 66.73 73.47 24.71 (P100)
my (resnet18+FPEM_FFM+pse扩张) 736 1e-3 84.93 74.09 79.14 21.31 (P100)
my (resnet50+FPEM_FFM+pse扩张) 736 1e-3 84.23 76.12 79.96 14.22 (P100)
my (ShuffleNetV2+FPEM_FFM+pse扩张) 736 1e-4 75.14 57.34 65.04 24.71 (P100)
my (resnet18+FPEM_FFM+pse扩张) 736 1e-4 83.89 69.23 75.86 21.31 (P100)
my (resnet50+FPEM_FFM+pse扩张) 736 1e-4 85.29 75.1 79.87 14.22 (P100)
my (resnet18+FPN+pse扩张) 736 1e-3 76.50 74.70 75.59 14.47 (P100)
my (resnet50+FPN+pse扩张) 736 1e-3 71.82 75.73 73.72 10.67 (P100)
my (resnet18+FPN+pse扩张) 736 1e-4 74.19 72.34 73.25 14.47 (P100)
my (resnet50+FPN+pse扩张) 736 1e-4 78.96 76.27 77.59 10.67 (P100)

examples

todo

  • MobileNet backbone

  • ShuffleNet backbone

reference

  1. https://arxiv.org/pdf/1908.05900.pdf
  2. https://github.com/WenmuZhou/PSENet.pytorch

If this repository helps you,please star it. Thanks.

Owner
zhoujun
深度学习工程师,最近准备做端侧
zhoujun
CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation

CSKG: The CommonSense Knowledge Graph CSKG is a commonsense knowledge graph that combines seven popular sources into a consolidated representation: AT

USC ISI I2 85 Dec 12, 2022
Coursera - Quiz & Assignment of Coursera

Coursera Assignments This repository is aimed to help Coursera learners who have difficulties in their learning process. The quiz and programming home

浅梦 828 Jan 04, 2023
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
[SIGGRAPH'22] StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets

[Project] [PDF] This repository contains code for our SIGGRAPH'22 paper "StyleGAN-XL: Scaling StyleGAN to Large Diverse Datasets" by Axel Sauer, Katja

742 Jan 04, 2023
MonoRCNN is a monocular 3D object detection method for automonous driving

MonoRCNN MonoRCNN is a monocular 3D object detection method for automonous driving, published at ICCV 2021. This project is an implementation of MonoR

87 Dec 27, 2022
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
ktrain is a Python library that makes deep learning and AI more accessible and easier to apply

Overview | Tutorials | Examples | Installation | FAQ | How to Cite Welcome to ktrain News and Announcements 2020-11-08: ktrain v0.25.x is released and

Arun S. Maiya 1.1k Jan 02, 2023
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
PyTorch implementation of DeepLab v2 on COCO-Stuff / PASCAL VOC

DeepLab with PyTorch This is an unofficial PyTorch implementation of DeepLab v2 [1] with a ResNet-101 backbone. COCO-Stuff dataset [2] and PASCAL VOC

Kazuto Nakashima 995 Jan 08, 2023
Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

Transformers4Rec is a flexible and efficient library for sequential and session-based recommendation, available for both PyTorch and Tensorflow.

730 Jan 09, 2023
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
SAT Project - The first project I had done at General Assembly, performed EDA, data cleaning and created data visualizations

Project 1: Standardized Test Analysis by Adam Klesc Overview This project covers: Basic statistics and probability Many Python programming concepts Pr

Adam Muhammad Klesc 1 Jan 03, 2022
Bottom-up attention model for image captioning and VQA, based on Faster R-CNN and Visual Genome

bottom-up-attention This code implements a bottom-up attention model, based on multi-gpu training of Faster R-CNN with ResNet-101, using object and at

Peter Anderson 1.3k Jan 09, 2023
Official Code for "Non-deep Networks"

Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Overview: Depth is the hallmark of DNNs. But more depth m

Ankit Goyal 567 Dec 12, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Designing a Practical Degradation Model for Deep Blind Image Super-Resolution (ICCV, 2021) (PyTorch) - We released the training code!

Designing a Practical Degradation Model for Deep Blind Image Super-Resolution Kai Zhang, Jingyun Liang, Luc Van Gool, Radu Timofte Computer Vision Lab

Kai Zhang 804 Jan 08, 2023