Neighborhood Contrastive Learning for Novel Class Discovery

Related tags

Deep LearningNCL
Overview

Neighborhood Contrastive Learning for Novel Class Discovery

License PyTorch

This repository contains the official implementation of our paper:

Neighborhood Contrastive Learning for Novel Class Discovery, CVPR 2021
Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, Nicu Sebe

Requirements

PyTorch >= 1.1

Data preparation

We follow AutoNovel to prepare the data

By default, we save the dataset in ./data/datasets/ and trained models in ./data/experiments/.

  • For CIFAR-10 and CIFAR-100, the datasets can be automatically downloaded by PyTorch.

  • For ImageNet, we use the exact split files used in the experiments following existing work. To download the split files, run the command: sh scripts/download_imagenet_splits.sh . The ImageNet dataset folder is organized in the following way:

    ImageNet/imagenet_rand118 #downloaded by the above command
    ImageNet/images/train #standard ImageNet training split
    ImageNet/images/val #standard ImageNet validation split
    

Pretrained models

We use the pretrained models (self-supervised learning and supervised learning) provided by AutoNovel. To download, run:

sh scripts/download_pretrained_models.sh

If you would like to train the self-supervised learning and supervised learning models by yourself, please refer to AutoNovel for more details.

After downloading, you can go to perform our neighbor contrastive learning below.

Neighborhood Contrastive Learning for Novel Class Discovery

CIFAR10/CIFAR100

Without Hard Negative Generation (w/o HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth
With Hard Negative Generation (w/ HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth

Note that, for cifar-10, we suggest to train the model w/o HNG, because the results of w HNG and w/o HNG for cifar-10 are similar. In addition, the model w/ HNG sometimes will collapse, but you can try different seeds to get the normal result.

ImageNet

Without Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset A --model_name resnet_imagenet_ncl

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset B --model_name resnet_imagenet_ncl

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset C --model_name resnet_imagenet_ncl
With Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset A --model_name resnet_imagenet_ncl_hng

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset B --model_name resnet_imagenet_ncl_hng

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset C --model_name resnet_imagenet_ncl_hng

Acknowledgement

Our code is heavily designed based on AutoNovel. If you use this code, please also acknowledge their paper.

Citation

We hope you find our work useful. If you would like to acknowledge it in your project, please use the following citation:

@InProceedings{Zhong_2021_CVPR,
      author    = {Zhong, Zhun and Fini, Enrico and Roy, Subhankar and Luo, Zhiming and Ricci, Elisa and Sebe, Nicu},
      title     = {Neighborhood Contrastive Learning for Novel Class Discovery},
      booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month     = {June},
      year      = {2021},
      pages     = {10867-10875}
}

Contact me

If you have any questions about this code, please do not hesitate to contact me.

Zhun Zhong

Owner
Zhun Zhong
Zhun Zhong
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it.

MFD-ILP Fast and exact ILP-based solvers for the Minimum Flow Decomposition (MFD) problem, and variants of it. The solvers are implemented using Pytho

Algorithmic Bioinformatics Group @ University of Helsinki 4 Oct 23, 2022
Square Root Bundle Adjustment for Large-Scale Reconstruction

RootBA: Square Root Bundle Adjustment Project Page | Paper | Poster | Video | Code Table of Contents Citation Dependencies Installing dependencies on

Nikolaus Demmel 205 Dec 20, 2022
Reinforcement Learning for finance

Reinforcement Learning for Finance We apply reinforcement learning for stock trading. Fetch Data Example import utils # fetch symbols from yahoo fina

Tomoaki Fujii 159 Jan 03, 2023
Code for the paper "Next Generation Reservoir Computing"

Next Generation Reservoir Computing This is the code for the results and figures in our paper "Next Generation Reservoir Computing". They are written

OSU QuantInfo Lab 105 Dec 20, 2022
Asymmetric metric learning for knowledge transfer

Asymmetric metric learning This is the official code that enables the reproduction of the results from our paper: Asymmetric metric learning for knowl

20 Dec 06, 2022
The pytorch implementation of DG-Font: Deformable Generative Networks for Unsupervised Font Generation

DG-Font: Deformable Generative Networks for Unsupervised Font Generation The source code for 'DG-Font: Deformable Generative Networks for Unsupervised

130 Dec 05, 2022
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
This is a re-implementation of TransGAN: Two Pure Transformers Can Make One Strong GAN (CVPR 2021) in PyTorch.

TransGAN: Two Transformers Can Make One Strong GAN [YouTube Video] Paper Authors: Yifan Jiang, Shiyu Chang, Zhangyang Wang CVPR 2021 This is re-implem

Ahmet Sarigun 79 Jan 05, 2023
Rank1 Conversation Emotion Detection Task

Rank1-Conversation_Emotion_Detection_Task accuracy macro-f1 recall 0.826 0.7544 0.719 基于预训练模型和时序预测模型的对话情感探测任务 1 摘要 针对对话情感探测任务,本文将其分为文本分类和时间序列预测两个子任务,分

Yuchen Han 2 Nov 28, 2021
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023