sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

Overview

sequitur

sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three different autoencoder architectures in PyTorch, and a predefined training loop. sequitur is ideal for working with sequential data ranging from single and multivariate time series to videos, and is geared for those who want to get started quickly with autoencoders.

import torch
from sequitur.models import LINEAR_AE
from sequitur import quick_train

train_seqs = [torch.randn(4) for _ in range(100)] # 100 sequences of length 4
encoder, decoder, _, _ = quick_train(LINEAR_AE, train_seqs, encoding_dim=2, denoise=True)

encoder(torch.randn(4)) # => torch.tensor([0.19, 0.84])

Each autoencoder learns to represent input sequences as lower-dimensional, fixed-size vectors. This can be useful for finding patterns among sequences, clustering sequences, or converting sequences into inputs for other algorithms.

Installation

Requires Python 3.X and PyTorch 1.2.X

You can install sequitur with pip:

$ pip install sequitur

Getting Started

1. Prepare your data

First, you need to prepare a set of example sequences to train an autoencoder on. This training set should be a list of torch.Tensors, where each tensor has shape [num_elements, *num_features]. So, if each example in your training set is a sequence of 10 5x5 matrices, then each example would be a tensor with shape [10, 5, 5].

2. Choose an autoencoder

Next, you need to choose an autoencoder model. If you're working with sequences of numbers (e.g. time series) or 1D vectors (e.g. word vectors), then you should use the LINEAR_AE or LSTM_AE model. For sequences of 2D matrices (e.g. videos) or 3D matrices (e.g. fMRI scans), you'll want to use CONV_LSTM_AE. Each model is a PyTorch module, and can be imported like so:

from sequitur.models import CONV_LSTM_AE

More details about each model are in the "Models" section below.

3. Train the autoencoder

From here, you can either initialize the model yourself and write your own training loop, or import the quick_train function and plug in the model, training set, and desired encoding size, like so:

import torch
from sequitur.models import CONV_LSTM_AE
from sequitur import quick_train

train_set = [torch.randn(10, 5, 5) for _ in range(100)]
encoder, decoder, _, _ = quick_train(CONV_LSTM_AE, train_set, encoding_dim=4)

After training, quick_train returns the encoder and decoder models, which are PyTorch modules that can encode and decode new sequences. These can be used like so:

x = torch.randn(10, 5, 5)
z = encoder(x) # Tensor with shape [4]
x_prime = decoder(z) # Tensor with shape [10, 5, 5]

API

Training your Model

quick_train(model, train_set, encoding_dim, verbose=False, lr=1e-3, epochs=50, denoise=False, **kwargs)

Lets you train an autoencoder with just one line of code. Useful if you don't want to create your own training loop. Training involves learning a vector encoding of each input sequence, reconstructing the original sequence from the encoding, and calculating the loss (mean-squared error) between the reconstructed input and the original input. The autoencoder weights are updated using the Adam optimizer.

Parameters:

  • model (torch.nn.Module): Autoencoder model to train (imported from sequitur.models)
  • train_set (list): List of sequences (each a torch.Tensor) to train the model on; has shape [num_examples, seq_len, *num_features]
  • encoding_dim (int): Desired size of the vector encoding
  • verbose (bool, optional (default=False)): Whether or not to print the loss at each epoch
  • lr (float, optional (default=1e-3)): Learning rate
  • epochs (int, optional (default=50)): Number of epochs to train for
  • **kwargs: Parameters to pass into model when it's instantiated

Returns:

  • encoder (torch.nn.Module): Trained encoder model; takes a sequence (as a tensor) as input and returns an encoding of the sequence as a tensor of shape [encoding_dim]
  • decoder (torch.nn.Module): Trained decoder model; takes an encoding (as a tensor) and returns a decoded sequence
  • encodings (list): List of tensors corresponding to the final vector encodings of each sequence in the training set
  • losses (list): List of average MSE values at each epoch

Models

Every autoencoder inherits from torch.nn.Module and has an encoder attribute and a decoder attribute, both of which also inherit from torch.nn.Module.

Sequences of Numbers

LINEAR_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Consists of fully-connected layers stacked on top of each other. Can only be used if you're dealing with sequences of numbers, not vectors or matrices.

Parameters:

  • input_dim (int): Size of each input sequence
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LINEAR_AE

model = LINEAR_AE(
  input_dim=10,
  encoding_dim=4,
  h_dims=[8, 6],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10) # Sequence of 10 numbers
z = model.encoder(x) # z.shape = [4]
x_prime = model.decoder(z) # x_prime.shape = [10]

Sequences of 1D Vectors

LSTM_AE(input_dim, encoding_dim, h_dims=[], h_activ=torch.nn.Sigmoid(), out_activ=torch.nn.Tanh())

Autoencoder for sequences of vectors which consists of stacked LSTMs. Can be trained on sequences of varying length.

Parameters:

  • input_dim (int): Size of each sequence element (vector)
  • encoding_dim (int): Size of the vector encoding
  • h_dims (list, optional (default=[])): List of hidden layer sizes for the encoder
  • h_activ (torch.nn.Module or None, optional (default=torch.nn.Sigmoid())): Activation function to use for hidden layers; if None, no activation function is used
  • out_activ (torch.nn.Module or None, optional (default=torch.nn.Tanh())): Activation function to use for the output layer in the encoder; if None, no activation function is used

Example:

To create the autoencoder shown in the diagram above, use the following arguments:

from sequitur.models import LSTM_AE

model = LSTM_AE(
  input_dim=3,
  encoding_dim=7,
  h_dims=[64],
  h_activ=None,
  out_activ=None
)

x = torch.randn(10, 3) # Sequence of 10 3D vectors
z = model.encoder(x) # z.shape = [7]
x_prime = model.decoder(z, seq_len=10) # x_prime.shape = [10, 3]

Sequences of 2D/3D Matrices

CONV_LSTM_AE(input_dims, encoding_dim, kernel, stride=1, h_conv_channels=[1], h_lstm_channels=[])

Autoencoder for sequences of 2D or 3D matrices/images, loosely based on the CNN-LSTM architecture described in Beyond Short Snippets: Deep Networks for Video Classification. Uses a CNN to create vector encodings of each image in an input sequence, and then an LSTM to create encodings of the sequence of vectors.

Parameters:

  • input_dims (tuple): Shape of each 2D or 3D image in the input sequences
  • encoding_dim (int): Size of the vector encoding
  • kernel (int or tuple): Size of the convolving kernel; use tuple to specify a different size for each dimension
  • stride (int or tuple, optional (default=1)): Stride of the convolution; use tuple to specify a different stride for each dimension
  • h_conv_channels (list, optional (default=[1])): List of hidden channel sizes for the convolutional layers
  • h_lstm_channels (list, optional (default=[])): List of hidden channel sizes for the LSTM layers

Example:

from sequitur.models import CONV_LSTM_AE

model = CONV_LSTM_AE(
  input_dims=(50, 100),
  encoding_dim=16,
  kernel=(5, 8),
  stride=(3, 5),
  h_conv_channels=[4, 8],
  h_lstm_channels=[32, 64]
)

x = torch.randn(22, 50, 100) # Sequence of 22 50x100 images
z = model.encoder(x) # z.shape = [16]
x_prime = model.decoder(z, seq_len=22) # x_prime.shape = [22, 50, 100]
Owner
Jonathan Shobrook
Jonathan Shobrook
Code and Resources for the Transformer Encoder Reasoning Network (TERN)

Transformer Encoder Reasoning Network Code for the cross-modal visual-linguistic retrieval method from "Transformer Reasoning Network for Image-Text M

Nicola Messina 53 Dec 30, 2022
An OpenAI Gym environment for Super Mario Bros

gym-super-mario-bros An OpenAI Gym environment for Super Mario Bros. & Super Mario Bros. 2 (Lost Levels) on The Nintendo Entertainment System (NES) us

Andrew Stelmach 1 Jan 05, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
PURE: End-to-End Relation Extraction

PURE: End-to-End Relation Extraction This repository contains (PyTorch) code and pre-trained models for PURE (the Princeton University Relation Extrac

Princeton Natural Language Processing 657 Jan 09, 2023
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
This is the source code of the 1st place solution for segmentation task (with Dice 90.32%) in 2021 CCF BDCI challenge.

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Fuzzing JavaScript Engines with Aspect-preserving Mutation

DIE Repository for "Fuzzing JavaScript Engines with Aspect-preserving Mutation" (in S&P'20). You can check the paper for technical details. Environmen

gts3.org (<a href=[email protected])"> 190 Dec 11, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation

E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation E2EC: An End-to-End Contour-based Method for High-Quality H

zhangtao 146 Dec 29, 2022
MultiLexNorm 2021 competition system from ÚFAL

ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5 David Samuel & Milan Straka Charles University Faculty of

ÚFAL 13 Jun 28, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Code for "Human Pose Regression with Residual Log-likelihood Estimation", ICCV 2021 Oral

Human Pose Regression with Residual Log-likelihood Estimation [Paper] [arXiv] [Project Page] Human Pose Regression with Residual Log-likelihood Estima

JeffLi 347 Dec 24, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

117 Dec 27, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
Tensorflow 2 implementation of the paper: Learning and Evaluating Representations for Deep One-class Classification published at ICLR 2021

Deep Representation One-class Classification (DROC). This is not an officially supported Google product. Tensorflow 2 implementation of the paper: Lea

Google Research 137 Dec 23, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022