BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

Overview

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey
IEEE International Conference on Computer Vision (ICCV), 2021 (oral presentation)

Project page: https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF
arXiv preprint: https://arxiv.org/abs/2104.06405

We provide PyTorch code for the NeRF experiments on both synthetic (Blender) and real-world (LLFF) datasets.


Prerequisites

This code is developed with Python3 (python3). PyTorch 1.9+ is required.
It is recommended use Anaconda to set up the environment. Install the dependencies and activate the environment barf-env with

conda env create --file requirements.yaml python=3
conda activate barf-env

Initialize the external submodule dependencies with

git submodule update --init --recursive

Dataset

  • Synthetic data (Blender) and real-world data (LLFF)

    Both the Blender synthetic data and LLFF real-world data can be found in the NeRF Google Drive. For convenience, you can download them with the following script: (under this repo)
    # Blender
    gdown --id 18JxhpWD-4ZmuFKLzKlAw-w5PpzZxXOcG # download nerf_synthetic.zip
    unzip nerf_synthetic.zip
    rm -f nerf_synthetic.zip
    mv nerf_synthetic data/blender
    # LLFF
    gdown --id 16VnMcF1KJYxN9QId6TClMsZRahHNMW5g # download nerf_llff_data.zip
    unzip nerf_llff_data.zip
    rm -f nerf_llff_data.zip
    mv nerf_llff_data data/llff
    The data directory should contain the subdirectories blender and llff. If you already have the datasets downloaded, you can alternatively soft-link them within the data directory.
  • iPhone (TODO)


Running the code

  • BARF models

    To train and evaluate BARF:

    # <GROUP> and <NAME> can be set to your likes, while <SCENE> is specific to datasets
    
    # Blender (<SCENE>={chair,drums,ficus,hotdog,lego,materials,mic,ship})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF (<SCENE>={fern,flower,fortress,horns,leaves,orchids,room,trex})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --resume

    All the results will be stored in the directory output/<GROUP>/<NAME>. You may want to organize your experiments by grouping different runs in the same group.

    To train baseline models:

    • Full positional encoding: omit the --barf_c2f argument.
    • No positional encoding: add --arch.posenc!.

    If you want to evaluate a checkpoint at a specific iteration number, use --resume=<ITER_NUMBER> instead of just --resume.

  • Training the original NeRF

    If you want to train the reference NeRF models (assuming known camera poses):

    # Blender
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE> --resume

    If you wish to replicate the results from the original NeRF paper, use --yaml=nerf_blender_repr or --yaml=nerf_llff_repr instead for Blender or LLFF respectively. There are some differences, e.g. NDC will be used for the LLFF forward-facing dataset. (The reference NeRF models considered in the paper do not use NDC to parametrize the 3D points.)

  • Visualizing the results

    We have included code to visualize the training over TensorBoard and Visdom. The TensorBoard events include the following:

    • SCALARS: the rendering losses and PSNR over the course of optimization. For BARF, the rotational/translational errors with respect to the given poses are also computed.
    • IMAGES: visualization of the RGB images and the RGB/depth rendering.

    We also provide visualization of 3D camera poses in Visdom. Run visdom -port 9000 to start the Visdom server.
    The Visdom host server is default to localhost; this can be overridden with --visdom.server (see options/base.yaml for details). If you want to disable Visdom visualization, add --visdom!.


Codebase structure

The main engine and network architecture in model/barf.py inherit those from model/nerf.py. This codebase is structured so that it is easy to understand the actual parts BARF is extending from NeRF. It is also simple to build your exciting applications upon either BARF or NeRF -- just inherit them again! This is the same for dataset files (e.g. data/blender.py).

To understand the config and command lines, take the below command as an example:

python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]

This will run model/barf.py as the main engine with options/barf_blender.yaml as the main config file. Note that barf hierarchically inherits nerf (which inherits base), making the codebase customizable.
The complete configuration will be printed upon execution. To override specific options, add --<key>=value or --<key1>.<key2>=value (and so on) to the command line. The configuration will be loaded as the variable opt throughout the codebase.

Some tips on using and understanding the codebase:

  • The computation graph for forward/backprop is stored in var throughout the codebase.
  • The losses are stored in loss. To add a new loss function, just implement it in compute_loss() and add its weight to opt.loss_weight.<name>. It will automatically be added to the overall loss and logged to Tensorboard.
  • If you are using a multi-GPU machine, you can add --gpu=<gpu_number> to specify which GPU to use. Multi-GPU training/evaluation is currently not supported.
  • To resume from a previous checkpoint, add --resume=<ITER_NUMBER>, or just --resume to resume from the latest checkpoint.
  • (to be continued....)

If you find our code useful for your research, please cite

@inproceedings{lin2021barf,
  title={BARF: Bundle-Adjusting Neural Radiance Fields},
  author={Lin, Chen-Hsuan and Ma, Wei-Chiu and Torralba, Antonio and Lucey, Simon},
  booktitle={IEEE International Conference on Computer Vision ({ICCV})},
  year={2021}
}

Please contact me ([email protected]) if you have any questions!

Owner
Chen-Hsuan Lin
Research scientist @NVIDIA, PhD in Robotics @ CMU
Chen-Hsuan Lin
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Yu Meng 38 Dec 12, 2022
Demo project for real time anomaly detection using kafka and python

kafkaml-anomaly-detection Project for real time anomaly detection using kafka and python It's assumed that zookeeper and kafka are running in the loca

Rodrigo Arenas 36 Dec 12, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
A Real-Time-Strategy game for Deep Learning research

Description DeepRTS is a high-performance Real-TIme strategy game for Reinforcement Learning research. It is written in C++ for performance, but provi

Centre for Artificial Intelligence Research (CAIR) 156 Dec 19, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
My coursework for Machine Learning (2021 Spring) at National Taiwan University (NTU)

Machine Learning 2021 Machine Learning (NTU EE 5184, Spring 2021) Instructor: Hung-yi Lee Course Website : (https://speech.ee.ntu.edu.tw/~hylee/ml/202

100 Dec 26, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Machine learning library for fast and efficient Gaussian mixture models

This repository contains code which implements the Stochastic Gaussian Mixture Model (S-GMM) for event-based datasets Dependencies CMake Premake4 Blaz

Omar Oubari 1 Dec 19, 2022
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Solutions of Reinforcement Learning 2nd Edition

Solutions of Reinforcement Learning, An Introduction

YIFAN WANG 1.4k Dec 30, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Repositório criado para abrigar os notebooks com a listas de exercícios propostos pelo professor Gustavo Guanabara do canal Curso em Vídeo do YouTube durante o Curso de Python 3

Curso em Vídeo - Exercícios de Python 3 Sobre o repositório Este repositório contém os notebooks com a listas de exercícios propostos pelo professor G

João Pedro Pereira 9 Oct 15, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022