Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Overview

Contrastive Unpaired Translation (CUT)

video (1m) | video (10m) | website | paper





We provide our PyTorch implementation of unpaired image-to-image translation based on patchwise contrastive learning and adversarial learning. No hand-crafted loss and inverse network is used. Compared to CycleGAN, our model training is faster and less memory-intensive. In addition, our method can be extended to single image training, where each “domain” is only a single image.

Contrastive Learning for Unpaired Image-to-Image Translation
Taesung Park, Alexei A. Efros, Richard Zhang, Jun-Yan Zhu
UC Berkeley and Adobe Research
In ECCV 2020




Pseudo code

import torch
cross_entropy_loss = torch.nn.CrossEntropyLoss()

# Input: f_q (BxCxS) and sampled features from H(G_enc(x))
# Input: f_k (BxCxS) are sampled features from H(G_enc(G(x))
# Input: tau is the temperature used in PatchNCE loss.
# Output: PatchNCE loss
def PatchNCELoss(f_q, f_k, tau=0.07):
    # batch size, channel size, and number of sample locations
    B, C, S = f_q.shape

    # calculate v * v+: BxSx1
    l_pos = (f_k * f_q).sum(dim=1)[:, :, None]

    # calculate v * v-: BxSxS
    l_neg = torch.bmm(f_q.transpose(1, 2), f_k)

    # The diagonal entries are not negatives. Remove them.
    identity_matrix = torch.eye(S)[None, :, :]
    l_neg.masked_fill_(identity_matrix, -float('inf'))

    # calculate logits: (B)x(S)x(S+1)
    logits = torch.cat((l_pos, l_neg), dim=2) / tau

    # return PatchNCE loss
    predictions = logits.flatten(0, 1)
    targets = torch.zeros(B * S, dtype=torch.long)
    return cross_entropy_loss(predictions, targets)

Example Results

Unpaired Image-to-Image Translation

Single Image Unpaired Translation

Russian Blue Cat to Grumpy Cat

Parisian Street to Burano's painted houses

Prerequisites

  • Linux or macOS
  • Python 3
  • CPU or NVIDIA GPU + CUDA CuDNN

Update log

9/12/2020: Added single-image translation.

Getting started

  • Clone this repo:
git clone https://github.com/taesungp/contrastive-unpaired-translation CUT
cd CUT
  • Install PyTorch 1.1 and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

CUT and FastCUT Training and Test

  • Download the grumpifycat dataset (Fig 8 of the paper. Russian Blue -> Grumpy Cats)
bash ./datasets/download_cut_dataset.sh grumpifycat

The dataset is downloaded and unzipped at ./datasets/grumpifycat/.

  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

  • Train the CUT model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_CUT --CUT_mode CUT

Or train the FastCUT model

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_FastCUT --CUT_mode FastCUT

The checkpoints will be stored at ./checkpoints/grumpycat_*/web.

  • Test the CUT model:
python test.py --dataroot ./datasets/grumpifycat --name grumpycat_CUT --CUT_mode CUT --phase train

The test results will be saved to a html file here: ./results/grumpifycat/latest_train/index.html.

CUT, FastCUT, and CycleGAN


CUT is trained with the identity preservation loss and with lambda_NCE=1, while FastCUT is trained without the identity loss but with higher lambda_NCE=10.0. Compared to CycleGAN, CUT learns to perform more powerful distribution matching, while FastCUT is designed as a lighter (half the GPU memory, can fit a larger image), and faster (twice faster to train) alternative to CycleGAN. Please refer to the paper for more details.

In the above figure, we measure the percentage of pixels belonging to the horse/zebra bodies, using a pre-trained semantic segmentation model. We find a distribution mismatch between sizes of horses and zebras images -- zebras usually appear larger (36.8% vs. 17.9%). Our full method CUT has the flexibility to enlarge the horses, as a means of better matching of the training statistics than CycleGAN. FastCUT behaves more conservatively like CycleGAN.

Training using our launcher scripts

Please see experiments/grumpifycat_launcher.py that generates the above command line arguments. The launcher scripts are useful for configuring rather complicated command-line arguments of training and testing.

Using the launcher, the command below generates the training command of CUT and FastCUT.

python -m experiments grumpifycat train 0   # CUT
python -m experiments grumpifycat train 1   # FastCUT

To test using the launcher,

python -m experiments grumpifycat test 0   # CUT
python -m experiments grumpifycat test 1   # FastCUT

Possible commands are run, run_test, launch, close, and so on. Please see experiments/__main__.py for all commands. Launcher is easy and quick to define and use. For example, the grumpifycat launcher is defined in a few lines:

Grumpy Cats dataset does not have test split. # Therefore, let's set the test split to be the "train" set. return ["python test.py " + str(opt.set(phase='train')) for opt in self.common_options()] ">
from .tmux_launcher import Options, TmuxLauncher


class Launcher(TmuxLauncher):
    def common_options(self):
        return [
            Options(    # Command 0
                dataroot="./datasets/grumpifycat",
                name="grumpifycat_CUT",
                CUT_mode="CUT"
            ),

            Options(    # Command 1
                dataroot="./datasets/grumpifycat",
                name="grumpifycat_FastCUT",
                CUT_mode="FastCUT",
            )
        ]

    def commands(self):
        return ["python train.py " + str(opt) for opt in self.common_options()]

    def test_commands(self):
        # Russian Blue -> Grumpy Cats dataset does not have test split.
        # Therefore, let's set the test split to be the "train" set.
        return ["python test.py " + str(opt.set(phase='train')) for opt in self.common_options()]

Apply a pre-trained CUT model and evaluate FID

To run the pretrained models, run the following.

# Download and unzip the pretrained models. The weights should be located at
# checkpoints/horse2zebra_cut_pretrained/latest_net_G.pth, for example.
wget http://efrosgans.eecs.berkeley.edu/CUT/pretrained_models.tar
tar -xf pretrained_models.tar

# Generate outputs. The dataset paths might need to be adjusted.
# To do this, modify the lines of experiments/pretrained_launcher.py
# [id] corresponds to the respective commands defined in pretrained_launcher.py
# 0 - CUT on Cityscapes
# 1 - FastCUT on Cityscapes
# 2 - CUT on Horse2Zebra
# 3 - FastCUT on Horse2Zebra
# 4 - CUT on Cat2Dog
# 5 - FastCUT on Cat2Dog
python -m experiments pretrained run_test [id]

# Evaluate FID. To do this, first install pytorch-fid of https://github.com/mseitzer/pytorch-fid
# pip install pytorch-fid
# For example, to evaluate horse2zebra FID of CUT,
# python -m pytorch_fid ./datasets/horse2zebra/testB/ results/horse2zebra_cut_pretrained/test_latest/images/fake_B/
# To evaluate Cityscapes FID of FastCUT,
# python -m pytorch_fid ./datasets/cityscapes/valA/ ~/projects/contrastive-unpaired-translation/results/cityscapes_fastcut_pretrained/test_latest/images/fake_B/
# Note that a special dataset needs to be used for the Cityscapes model. Please read below. 
python -m pytorch_fid [path to real test images] [path to generated images]

Note: the Cityscapes pretrained model was trained and evaluated on a resized and JPEG-compressed version of the original Cityscapes dataset. To perform evaluation, please download this validation set and perform evaluation.

SinCUT Single Image Unpaired Training

To train SinCUT (single-image translation, shown in Fig 9, 13 and 14 of the paper), you need to

  1. set the --model option as --model sincut, which invokes the configuration and codes at ./models/sincut_model.py, and
  2. specify the dataset directory of one image in each domain, such as the example dataset included in this repo at ./datasets/single_image_monet_etretat/.

For example, to train a model for the Etretat cliff (first image of Figure 13), please use the following command.

python train.py --model sincut --name singleimage_monet_etretat --dataroot ./datasets/single_image_monet_etretat

or by using the experiment launcher script,

python -m experiments singleimage run 0

For single-image translation, we adopt network architectural components of StyleGAN2, as well as the pixel identity preservation loss used in DTN and CycleGAN. In particular, we adopted the code of rosinality, which exists at models/stylegan_networks.py.

The training takes several hours. To generate the final image using the checkpoint,

python test.py --model sincut --name singleimage_monet_etretat --dataroot ./datasets/single_image_monet_etretat

or simply

python -m experiments singleimage run_test 0

Datasets

Download CUT/CycleGAN/pix2pix datasets. For example,

bash datasets/download_cut_datasets.sh horse2zebra

The Cat2Dog dataset is prepared from the AFHQ dataset. Please visit https://github.com/clovaai/stargan-v2 and download the AFHQ dataset by bash download.sh afhq-dataset of the github repo. Then reorganize directories as follows.

mkdir datasets/cat2dog
ln -s datasets/cat2dog/trainA [path_to_afhq]/train/cat
ln -s datasets/cat2dog/trainB [path_to_afhq]/train/dog
ln -s datasets/cat2dog/testA [path_to_afhq]/test/cat
ln -s datasets/cat2dog/testB [path_to_afhq]/test/dog

The Cityscapes dataset can be downloaded from https://cityscapes-dataset.com. After that, use the script ./datasets/prepare_cityscapes_dataset.py to prepare the dataset.

Preprocessing of input images

The preprocessing of the input images, such as resizing or random cropping, is controlled by the option --preprocess, --load_size, and --crop_size. The usage follows the CycleGAN/pix2pix repo.

For example, the default setting --preprocess resize_and_crop --load_size 286 --crop_size 256 resizes the input image to 286x286, and then makes a random crop of size 256x256 as a way to perform data augmentation. There are other preprocessing options that can be specified, and they are specified in base_dataset.py. Below are some example options.

  • --preprocess none: does not perform any preprocessing. Note that the image size is still scaled to be a closest multiple of 4, because the convolutional generator cannot maintain the same image size otherwise.
  • --preprocess scale_width --load_size 768: scales the width of the image to be of size 768.
  • --preprocess scale_shortside_and_crop: scales the image preserving aspect ratio so that the short side is load_size, and then performs random cropping of window size crop_size.

More preprocessing options can be added by modifying get_transform() of base_dataset.py.

Citation

If you use this code for your research, please cite our paper.

@inproceedings{park2020cut,
  title={Contrastive Learning for Unpaired Image-to-Image Translation},
  author={Taesung Park and Alexei A. Efros and Richard Zhang and Jun-Yan Zhu},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

If you use the original pix2pix and CycleGAN model included in this repo, please cite the following papers

@inproceedings{CycleGAN2017,
  title={Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks},
  author={Zhu, Jun-Yan and Park, Taesung and Isola, Phillip and Efros, Alexei A},
  booktitle={IEEE International Conference on Computer Vision (ICCV)},
  year={2017}
}


@inproceedings{isola2017image,
  title={Image-to-Image Translation with Conditional Adversarial Networks},
  author={Isola, Phillip and Zhu, Jun-Yan and Zhou, Tinghui and Efros, Alexei A},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2017}
}

Acknowledgments

We thank Allan Jabri and Phillip Isola for helpful discussion and feedback. Our code is developed based on pytorch-CycleGAN-and-pix2pix. We also thank pytorch-fid for FID computation, drn for mIoU computation, and stylegan2-pytorch for the PyTorch implementation of StyleGAN2 used in our single-image translation setting.

Owner
Research Scientist at Adobe https://taesung.me
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Volumetric parameterization of the placenta to a flattened template

placenta-flattening A MATLAB algorithm for volumetric mesh parameterization. Developed for mapping a placenta segmentation derived from an MRI image t

Mazdak Abulnaga 12 Mar 14, 2022
Script utilizando OpenCV e modelo Machine Learning para detectar o uso de máscaras.

Reconhecendo máscaras Este repositório contém um script em Python3 que reconhece se um rosto está ou não portando uma máscara! O código utiliza da bib

Maria Eduarda de Azevedo Silva 168 Oct 20, 2022
Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery

Lorien: A Unified Infrastructure for Efficient Deep Learning Workloads Delivery Lorien is an infrastructure to massively explore/benchmark the best sc

Amazon Web Services - Labs 45 Dec 12, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning

Ensemble Knowledge Guided Sub-network Search and Fine-tuning for Filter Pruning This repository is official Tensorflow implementation of paper: Ensemb

Seunghyun Lee 12 Oct 18, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
An investigation project for SISR.

SISR-Survey An investigation project for SISR. This repository is an official project of the paper "From Beginner to Master: A Survey for Deep Learnin

Juncheng Li 79 Oct 20, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
⚡️Optimizing einsum functions in NumPy, Tensorflow, Dask, and more with contraction order optimization.

Optimized Einsum Optimized Einsum: A tensor contraction order optimizer Optimized einsum can significantly reduce the overall execution time of einsum

Daniel Smith 653 Dec 30, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023