An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Overview

Merel-MoCap-GAIL

An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data:

Learning human behaviors from motion capture by adversarial imitation
Josh Merel, Yuval Tassa, Dhruva TB, Sriram Srinivasan, Jay Lemmon, Ziyu Wang, Greg Wayne, Nicolas Heess
arXiv preprint arXiv:1707.02201, 2017

Acknowledgements

This code is based on an earlier version developed by Ruben Villegas.

Clone the Repository

This repo contains one submodule (baselines), so make sure you clone with --recursive:

git clone --recursive https://github.com/ywchao/merel-mocap-gail.git

Installation

Make sure the following are installed.

  • Our own branch of baselines provided as a submodule

    1. Change the directory:

      cd baselines
    2. Go through the installation steps in this README without re-cloning the repo.

  • An old verion of dm_control provided as a submodule

    1. Change the directory:

      cd dm_control
    2. Go through the installation steps in this README without re-cloning the repo. This requires the installation of MuJoCo. Also make sure to install the cloned verion:

      pip install .

    Note that we have only tested on this version. The code might work with newer versions but it is not guaranteed.

  • Matplotlib

Training and Visualization

  1. Download the CMU MoCap dataset:

    ./scripts/download_cmu_mocap.sh

    This will populate the data folder with cmu_mocap.

  2. Preprocess data. We use the walk sequences from subject 8 as described in the paper.

    ./scripts/data_collect.sh

    The output will be saved in data/cmu_mocap.npz.

  3. Visualize the processed MoCap sequences in dm_control:

    ./scripts/data_visualize.sh

    The output will be saved in data/cmu_mocap_vis.

  4. Start training:

    ./scripts/train.sh 0 1

    Note that:

    • The first argument sets the random seed, and the second argument sets the number of used sequences.
    • For now we use only sequence 1. We will show using all sequences in later steps.
    • The command will run training with random seed 0. In practice we recommend running multiple training jobs with different seeds in parallel, as the training outcome is often sensitive to the seed value.

    The output will be saved in output.

  5. Monitor training with TensorBoard:

    tensorboard --logdir=output --port=6006

    Below are the curves of episode length, rewards, and true rewards, obtained with four different random seeds:

  6. Visualize trained humanoid:

    ./scripts/visualize.sh \
      output/trpo_gail.obs_only.transition_limitation_1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/checkpoints/model.ckpt-30000 \
      output/trpo_gail.obs_only.transition_limitation_1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/vis_model.ckpt-30000.mp4 \
      0 \
      1

    The arguments are the model path, output video (mp4) file path, random seed, and number of used sequences.

    Below is a sample visualization:

  7. If you want to train with all sequences from subject 8. This can be done by replacing 1 by -1 in step 4:

    ./scripts/train.sh 0 -1

    Similarly, for visualization, replace 1 by -1 and update the paths:

    ./scripts/visualize.sh \
      output/trpo_gail.obs_only.transition_limitation_-1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/checkpoints/model.ckpt-50000 \
      output/trpo_gail.obs_only.transition_limitation_-1.humanoid_CMU_run.g_step_3.d_step_1.policy_entcoeff_0.adversary_entcoeff_0.001.seed_0.num_timesteps_5.00e+07/vis_model.ckpt-50000.mp4 \
      0 \
      -1

    Note that training takes longer to converge when using all sequences:

    A sample visualization:

Owner
Yu-Wei Chao
Yu-Wei Chao
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
A Free and Open Source Python Library for Multiobjective Optimization

Platypus What is Platypus? Platypus is a framework for evolutionary computing in Python with a focus on multiobjective evolutionary algorithms (MOEAs)

Project Platypus 424 Dec 18, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Parsing, analyzing, and comparing source code across many languages

Semantic semantic is a Haskell library and command line tool for parsing, analyzing, and comparing source code. In a hurry? Check out our documentatio

GitHub 8.6k Dec 28, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
A PyTorch implementation of "Graph Wavelet Neural Network" (ICLR 2019)

Graph Wavelet Neural Network ⠀⠀ A PyTorch implementation of Graph Wavelet Neural Network (ICLR 2019). Abstract We present graph wavelet neural network

Benedek Rozemberczki 490 Dec 16, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
TakeInfoatNistforICS - Take Information in NIST NVD for ICS

Take Information in NIST NVD for ICS This project developed with Python. When yo

5 Sep 05, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
Code for "Long-tailed Distribution Adaptation"

Long-tailed Distribution Adaptation (Accepted in ACM MM2021) This project is built upon BBN. Installation pip install -r requirements.txt Usage Traini

Zhiliang Peng 10 May 18, 2022
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Cancer metastasis detection with neural conditional random field (NCRF)

NCRF Prerequisites Data Whole slide images Annotations Patch images Model Training Testing Tissue mask Probability map Tumor localization FROC evaluat

Baidu Research 731 Jan 01, 2023