iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

Related tags

Deep Learningipoke
Overview

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

Show me that GUI

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

Andreas Blattmann, Timo Milbich, Michael Dorkenwald, Björn Ommer

TL;DR We present iPOKE, a model for locally controlled, stochastic video synthesis based on poking a single pixel in a static scene, that enables users to animate still images only with simple mouse drags.

Arxiv | Project page | BibTeX

Table of contents

  1. Requirements
  2. Pretrained models
  3. Graphical User Interface
  4. Generating samples
  5. Data preparation
  6. Evaluation
  7. Train your own models
  8. Shout-outs
  9. BibTeX

Requirements

A suitable conda environment named ipoke can be created with

conda env create -f ipoke.yml 
conda activate ipoke

Pretrained models

To you can find all pretrained models here. Download and extract the zip-file in a <LOGDIR> and create a symbolic link to the created repository which is name ipoke via

ln -s <LOGDIR>/ipoke logs

Here's a list of all available pretrained models, which are contained in the extracted directories.

Dataset Spatial Video resolution Model Name FVD
Poking Plants 128 x 128 plants_128 63.06
Poking Plants 64 x 64 plants_64 56.59
iPER 128 x 128 iper_128 74.53
iPER 64 x 64 iper_64 81.49
Human3.6m 128 x 128 h36m_128 119.77
Human3.6m 64 x 64 h36m_64 111.55
TaiChi-HD 128 x 128 taichi_128 100.69
TaiChi-HD 64 x 64 taichi_64 96.09

Make sure to first prepare the data before using our pretrained models.

Graphical User Interface

Show me that GUI

To get in touch with our models, use our GUI via the command

python -m testing.gui --model_name <MODEL_NAME> --gpu <GPU_ID>

, where the <MODEL_NAME> parameter shoud be one of the model names in the above table which shows our provided pretrained models.

Generating samples

Controlled stochastic video synthesis

Show me the samples!

Samples can also be automatically generated by using simulated pokes based on optical flow via

python -W ignore  main.py --config config/second_stage.yaml --gpus <GPU_IDs> --model_name <MODEL_NAME> --test samples

The resulting videos will be saved to <LOGDIR>/ipoke/second_stage/generated/<MODEL_NAME>/samples_best_fvd.

Kinematics transfer

Show me some transfer

Moreover, our iPOKE model provides means to transfer kinematics between videos of persons with similar start pose as shown in the above examples. Similar results can be generated with

python -W ignore  main.py --config config/second_stage.yaml --gpus <GPU_IDs> --model_name <MODEL_NAME> --test transfer

The resulting videos will be saved to <LOGDIR>/ipoke/second_stage/generated/<MODEL_NAME>/transfer. NOTE This is currently only possible for the iPER dataset.

Control sensitivity

Show me some transfer

To observe the results from different pokes at the same pixel, you can run

python -W ignore  main.py --config config/second_stage.yaml --gpus <GPU_IDs> --model_name <MODEL_NAME> --test control_sensititvity

The resulting videos will be saved to <LOGDIR>/ipoke/second_stage/generated/<MODEL_NAME>/poke_dir_samples_best_fvd. NOTE This is currently only possible for the iPER dataset.

Data Preparation

Get FlowNet2 and PoseHRNet for data processing

As preparing the data to evaluate our pretrained models or train new ones requires to estimate optical flow maps and human poses (currently only supported for iPER), we added the respective models Flownet2 and PoseHRNet as a git submodules. To clone, simply run

git submodule init
git submodule sync
git submodule update

Since Flownet2 requires cuda-10.0 and is therefore not compatible with our main conda environment, we provide a separate conda enviroment for optical flow estimation which can bet created via

conda env create -f data_proc.yml

You can activate the environment and specify the right cuda version by using

source activate_data_proc

from the root of this repository. IMPORTANT: You have to ensure that lines 3 and 4 in the activate_data_proc-script add your respective cuda-10.0 installation direcories to the PATH and LD_LIBRARY_PATH environment variables. This environment, however, is only required for generating the datasets and will not be required afterwards. Finally, you have to build the custom layers of FlowNet2 and PoseHRNet with

cd models/flownet2
bash install.sh -ccbin <PATH TO_GCC7>
cd ../pose_estimator/lib
make

, where <PATH TO_GCC7> is the path to your gcc-7-binary, which is usually /usr/bin/gcc-7 on a linux server. Make sure that your data_proc environment is activated and that the env-variables contain the cuda-10.0 installation when running the script (which is both done by running source activate_data_proc).

Poking Plants

Download Poking Plants dataset from here and extract it to a <TARGETDIR>, which then contains the raw video files. To extract the multi-zip file, use

zip -s 0 poking_plants.zip --out poking_plants_unsplit.zip
unzip poking_plants_unsplit.zip

To extract the individual frames and estimate optical flow set the value of the field raw_dir in config/data_preparation/plants.yaml to be <TARGETDIR>, define the target location for the extracted frames (, where all frames of each video will be within a unique directory) via the field processed_dir and run

source activate_data_proc
python -m utils.prepare_dataset --config config/data_preparation/plants.yaml

By defining the number of parallel runs of flownet2, which will be distributed among the gpus with the ids specified in target_gpus, with the num_workers-argument, you can significantly speed up the optical flow estimation.

iPER

Download the zipped videos in iPER_1024_video_release.zip from this website website (note that you have to create a microsoft account to get access) and extract the archive to a <TARGETDIR> similar to the above example. There, you'll also find the train.txt and val.txt. Download these files and save them in the <TARGETDIR> Again, set the undefined value of the field raw_dir in config/data_preparation/iper.yaml to be <TARGETDIR>, define the target location for the extracted frames and the optical flow via processed_dir and run

python -m utils.prepare_dataset --config config/data_preparation/iper.yaml

with the flownet2 environment activated.

Human3.6m

Firstly, you will need to create an account at the homepage of the Human3.6m dataset to gain access to the dataset. After your account is created and approved (takes a couple of hours), log in and inspect your cookies to find your PHPSESSID. Fill in that PHPSESSID in data/config.ini and also specify the TARGETDIR there, where the extracted videos will be later stored. After setting the field processed_dir in config/data_preparation/human36m.yaml, you can download and extract the videos via

source activate_data_proc
python -m data.human36m_preprocess

with the flownet2 environment activated. Frame extraction and optical flow estimation are then done as usual with

source activate_data_proc
python -m data.prepare_dataset --config config/data_preparation/human36m.yaml

TaiChi-HD

To download and extract the videos, follow the steps listed at the download page for this dataset and set the out_folder argument of the script load_videos.py to be our <TARGETDIR> from the above examples. Again set the fields raw_dir and processed_dir in config/data_preparation/taichi.yaml similar to the above examples and run

source activate_data_proc
python -m data.prepare_dataset --config config/data_preparation/taichi.yaml

with the flownet2 environment activated to extract the individual frames and estimate the optical flow maps.

Evaluation

To reproduce the quantitative results presented in the paper for all our provided pretrained models, run

python -m testing.eval_models --gpu <GPU_ID> -e <TEST_MODE>

where TEST_MODE should be in [fvd, accuracy, diversity, kps_acc]. The models which shall be evaluated are specified in the file config/model_names.txt. Here's an explanation of the different values of the <TEST_MODE> parameter:

<TEST_MODE> Experiment Comment
fvd Compute FVD scores if you encounter tensorflow errors due to missing libraries add LD_LIBRARY_PATH=/usr/local/<LOCAL_CUDA_VERSION>/targets/x86_64-linux/lib/ before the above command. (Tested under Ubuntu 20.04 LTS)
accuracy Calculate accuracy scores [LPIPS, SSIM, PSNR] as explained in the paper, results are printed to console and are also saved to logs/second_stage/generated/<MODEL_NAME>/metrics/ for the respective model
diversity Calculate diversity scores based on [LPIPS, MSE] as explained in the paper , results are printed to console and are also saved to logs/second_stage/generated/<MODEL_NAME>/metrics/ for the respective model
kps_acc Targeted keypoint accuracy only for the poked body parts For a detailed explanation, see Fig. 8 and the respective section in the paper; Only supported for the models trained on the iPER dataset.

If you only want to calculate the metrics only for one of our models or if you want to test your own one, run

python -W ignore main.py --config config/second_stage.yaml --model_name <MODEL_NAME> --gpus <GPU_IDs> --test <TEST_MODE>

Again, make sure to add LD_LIBRARY_PATH=/usr/local/<LOCAL_CUDA_VERSION>/targets/x86_64-linux/lib/ before the command if there are tensorflow errors caused by missing libraries when calculating FVD-scores.

Train your own models

As stated in our paper, our overall training procedure is divided in two main stages. To enable tractable training for our input-output-dimensionality preserving invertible model we first pretrain a video autoencoding framework to obtain latent video codes with much smaller dimensionality than the original videos. After that we train our conditional invertible generative model on these compressed video representations.

For logging our runs we used and recommend wandb. Please create a free account and add your username to the config. During training of both our video autoencoding (first stage) and invertible models (second stage) we save those checkpoints with the smallest FVD-score during evaluation. As the original FVD implementation only available in tensorflow, we created a custom pytorch FVD-model which we use during training (for evaluation, we use the original implementation). The copmuted scores do not coincide with the original ones but the are strongly correlated. Therefore, this metric serves well when intending to optimize the model wrt. FVD.

Video autoencoding model

To train our video autoencoding model run the following command

python -W ignore main.py --config config/first_stage.yaml --gpus <GPU_ID> --model_name <MODEL_NAME>

The used train data, model architecture and video resolution can be specified in config/first_stage.yaml. The the comments for an explanantion of the parameters.

If you have trained such a model and want to use it for subsequent training of our invertible second stage model you can add it to the first_stage_models-dict in the file models/pretrained_models.py by simply specifying the <MODEL_NAME> and the path to the checkpoint-file want to use.

Invertible generative model

Our conditional invertible model can be trained via the command

python -W ignore main.py --config config/second_stage.yaml --gpus <GPU_ID> --model_name <MODEL_NAME>

Again, the respective parameters to define the data and model hyperparameters can be specified in the config file config/second_stage.yaml. We also provide config files to train with the exact parameters which were used for our pretrained models. These files can be found in config/pretrained_models/.

As our invertible models rely on pretrained networks (video autoencoding models as well as encoders for the source image x_0 and the poke c) you have to specify these models in the config. We provide all such pretrained models on all considered datasets for video resolutions 64X64 and 128X128. These are automatically selected based on the keys specified in the config files when starting the models. All available pretrained models and their keys can be found and expanded in models/pretrained_models.py.

Poke encoder

To train a new poke encoder, run the following command

python -W ignore main.py --config config/poke_encoder.yaml --gpus <GPU> --model_name <MODEL_NAME>

As for our video autoencoding framework, you cann add your final trained model to the respective poke_embedder-dict in models/pretrained_models.py.

Source image encoder

To train a new poke encoder, run the following command

python -W ignore main.py --config config/img_encoder.yaml --gpus <GPU> --m[PyTorch FID](https://github.com/mseitzer/pytorch-fid)odel_name <MODEL_NAME>

As for our video autoencoding framework, you cann add your final trained model to the respective conditioner-dict in models/pretrained_models.py.

cVAE baseline

Finally we also provide code to train the cVAE baseline which we used in the ablation study in our paper. To train such a model, run

python -W ignore main.py --config config/baseline_vae.yaml --gpus <GPU> --model_name <MODEL_NAME>

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

  • The Wolf library, from where we borrowed the basic operations for our masked convolutional normalizing flow implementation
  • Our 3D encoder and discriminator are based on 3D-Resnet and spatial discriminator is adapted from PatchGAN
  • The deep features based metrics which were used: LPIPS and FVD

BibTeX

@misc{blattmann2021ipoke,
      title={iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis}, 
      author={Andreas Blattmann and Timo Milbich and Michael Dorkenwald and Björn Ommer},
      year={2021},
      eprint={2107.02790},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
CompVis Heidelberg
Computer Vision research group at the Ruprecht-Karls-University Heidelberg
CompVis Heidelberg
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
[CVPR2021] Invertible Image Signal Processing

Invertible Image Signal Processing This repository includes official codes for "Invertible Image Signal Processing (CVPR2021)". Figure: Our framework

Yazhou XING 281 Dec 31, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function

With this package, you can generate mixed-integer linear programming (MIP) models of trained artificial neural networks (ANNs) using the rectified linear unit (ReLU) activation function. At the momen

ChemEngAI 40 Dec 27, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
quantize aware training package for NCNN on pytorch

ncnnqat ncnnqat is a quantize aware training package for NCNN on pytorch. Table of Contents ncnnqat Table of Contents Installation Usage Code Examples

62 Nov 23, 2022
This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021) Arxiv link Blog post This codebase is built on Causal Norm. Install co

Hyperconnect 85 Oct 18, 2022
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21'

Argument Extraction by Generation Code for paper "Document-Level Argument Extraction by Conditional Generation". NAACL 21' Dependencies pytorch=1.6 tr

Zoey Li 87 Dec 26, 2022
[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation

[CVPR2021] Domain Consensus Clustering for Universal Domain Adaptation [Paper] Prerequisites To install requirements: pip install -r requirements.txt

Guangrui Li 84 Dec 26, 2022
Image-Stitching - Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm

About The Project Panorama composition using SIFT Features and a custom implementaion of RANSAC algorithm (Random Sample Consensus). Author: Andreas P

Andreas Panayiotou 3 Jan 03, 2023
Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution.

convolver Python script that takes an Impulse response .wav and a input .wav to demonstrate audio convolution. Created by Sean Higley

Sean Higley 1 Feb 23, 2022
A flag generation AI created using DeepAIs API

Vex AI or Vexiology AI is an Artifical Intelligence created to generate custom made flag design texts. It uses DeepAIs API. Please be aware that you must include your own DeepAI API key. See instruct

Bernie 10 Apr 06, 2022
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023