PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

Related tags

Deep LearningMemSeg
Overview

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments

Introduction

This repository is a PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments. This work is based on semseg.

The codebase mainly uses ResNet18, ResNet50 and MobileNet-V2 as backbone with ASPP module and can be easily adapted to other basic semantic segmentation structures.

Sample experimented dataset is RUGD.

Requirement

Hardware: >= 11G GPU memory

Software: PyTorch>=1.0.0, python3

Usage

For installation, follow installation steps below or recommend you to refer to the instructions described here.

For its pretrained ResNet50 backbone model, you can download from URL.

Getting Started

Installation

  1. Clone this repository.
git clone https://github.com/youngsjjn/MemSeg.git
  1. Install Python dependencies.
pip install -r requirements.txt

Implementation

  1. Download datasets (i.e. RUGD) and change the root of data path in config.

Download data list of RUGD here.

  1. Inference If you want to inference on pretrained models, download pretrained network in my drive and save them in ./exp/rugd/.

Inference "ResNet50 + Deeplabv3" without the memory module

sh tool/test.sh rugd deeplab50

Inference "ResNet50 + Deeplabv3" with the memory module

sh tool/test_mem.sh rugd deeplab50mem
Network mIoU
ResNet18 + PSPNet 33.42
ResNet18 + PSPNet (Memory) 34.13
ResNet18 + Deeplabv3 33.48
ResNet18 + Deeplabv3 (Memory) 35.07
ResNet50 + Deeplabv3 36.77
ResNet50 + Deeplabv3 (Memory) 37.71
  1. Train (Evaluation is included at the end of the training) Train "ResNet50 + Deeplabv3" without the memory module
sh tool/train.sh rugd deeplab50

Train "ResNet50 + Deeplabv3" without the memory module

sh tool/train_mem.sh rugd deeplab50mem

Here, the example is for training or testing on "ResNet50 + Deeplabv3". If you want to train other networks, please change "deeplab50" or "deeplab50mem" as a postfix of a config file name.

For example, train "ResNet18 + PSPNet" with the memory module:

sh tool/train_mem.sh rugd pspnet18mem

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{DBLP:journals/corr/abs-2108-05635,
  author    = {Youngsaeng Jin and
               David K. Han and
               Hanseok Ko},
  title     = {Memory-based Semantic Segmentation for Off-road Unstructured Natural
               Environments},
  journal   = {CoRR},
  volume    = {abs/2108.05635},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.05635},
  eprinttype = {arXiv},
  eprint    = {2108.05635},
  timestamp = {Wed, 18 Aug 2021 19:45:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-05635.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Creative Applications of Deep Learning w/ Tensorflow

Creative Applications of Deep Learning w/ Tensorflow This repository contains lecture transcripts and homework assignments as Jupyter Notebooks for th

Parag K Mital 1.5k Dec 30, 2022
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
This is an implementation of PIFuhd based on Pytorch

Open-PIFuhd This is a unofficial implementation of PIFuhd PIFuHD: Multi-Level Pixel-Aligned Implicit Function forHigh-Resolution 3D Human Digitization

Lingteng Qiu 235 Dec 19, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
Self-supervised Product Quantization for Deep Unsupervised Image Retrieval - ICCV2021

Self-supervised Product Quantization for Deep Unsupervised Image Retrieval Pytorch implementation of SPQ Accepted to ICCV 2021 - paper Young Kyun Jang

Young Kyun Jang 71 Dec 27, 2022
Deep Q-learning for playing chrome dino game

[PYTORCH] Deep Q-learning for playing Chrome Dino

Viet Nguyen 68 Dec 05, 2022
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Repository for the AugmentedPCA Python package.

Overview This Python package provides implementations of Augmented Principal Component Analysis (AugmentedPCA) - a family of linear factor models that

Billy Carson 6 Dec 07, 2022
Official Pytorch Implementation of Length-Adaptive Transformer (ACL 2021)

Length-Adaptive Transformer This is the official Pytorch implementation of Length-Adaptive Transformer. For detailed information about the method, ple

Clova AI Research 93 Dec 28, 2022
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Commonsense Question Answering

Path-Generator-QA This is a Pytorch implementation for the EMNLP 2020 (Findings) paper: Connecting the Dots: A Knowledgeable Path Generator for Common

Peifeng Wang 33 Dec 05, 2022