PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

Related tags

Deep LearningMemSeg
Overview

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments

Introduction

This repository is a PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments. This work is based on semseg.

The codebase mainly uses ResNet18, ResNet50 and MobileNet-V2 as backbone with ASPP module and can be easily adapted to other basic semantic segmentation structures.

Sample experimented dataset is RUGD.

Requirement

Hardware: >= 11G GPU memory

Software: PyTorch>=1.0.0, python3

Usage

For installation, follow installation steps below or recommend you to refer to the instructions described here.

For its pretrained ResNet50 backbone model, you can download from URL.

Getting Started

Installation

  1. Clone this repository.
git clone https://github.com/youngsjjn/MemSeg.git
  1. Install Python dependencies.
pip install -r requirements.txt

Implementation

  1. Download datasets (i.e. RUGD) and change the root of data path in config.

Download data list of RUGD here.

  1. Inference If you want to inference on pretrained models, download pretrained network in my drive and save them in ./exp/rugd/.

Inference "ResNet50 + Deeplabv3" without the memory module

sh tool/test.sh rugd deeplab50

Inference "ResNet50 + Deeplabv3" with the memory module

sh tool/test_mem.sh rugd deeplab50mem
Network mIoU
ResNet18 + PSPNet 33.42
ResNet18 + PSPNet (Memory) 34.13
ResNet18 + Deeplabv3 33.48
ResNet18 + Deeplabv3 (Memory) 35.07
ResNet50 + Deeplabv3 36.77
ResNet50 + Deeplabv3 (Memory) 37.71
  1. Train (Evaluation is included at the end of the training) Train "ResNet50 + Deeplabv3" without the memory module
sh tool/train.sh rugd deeplab50

Train "ResNet50 + Deeplabv3" without the memory module

sh tool/train_mem.sh rugd deeplab50mem

Here, the example is for training or testing on "ResNet50 + Deeplabv3". If you want to train other networks, please change "deeplab50" or "deeplab50mem" as a postfix of a config file name.

For example, train "ResNet18 + PSPNet" with the memory module:

sh tool/train_mem.sh rugd pspnet18mem

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{DBLP:journals/corr/abs-2108-05635,
  author    = {Youngsaeng Jin and
               David K. Han and
               Hanseok Ko},
  title     = {Memory-based Semantic Segmentation for Off-road Unstructured Natural
               Environments},
  journal   = {CoRR},
  volume    = {abs/2108.05635},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.05635},
  eprinttype = {arXiv},
  eprint    = {2108.05635},
  timestamp = {Wed, 18 Aug 2021 19:45:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-05635.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
An implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional Neural Network"

Retina Blood Vessels Segmentation This is an implementation of the research paper "Retina Blood Vessel Segmentation Using A U-Net Based Convolutional

Srijarko Roy 23 Aug 20, 2022
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Space Ship Simulator using python

FlyOver Basic space-ship simulator using python How to run? Just double click run.py What modules do i need? All modules that i currently using is bui

0 Oct 09, 2022
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
The repo for reproducing Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study

ECIR Reproducibility Paper: Seed-driven Document Ranking for Systematic Reviews: A Reproducibility Study This code corresponds to the reproducibility

ielab 3 Mar 31, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Complete* list of autonomous driving related datasets

AD Datasets Complete* and curated list of autonomous driving related datasets Contributing Contributions are very welcome! To add or update a dataset:

Daniel Bogdoll 13 Dec 19, 2022
Imposter-detector-2022 - HackED 2022 Team 3IQ - 2022 Imposter Detector

HackED 2022 Team 3IQ - 2022 Imposter Detector By Aneeljyot Alagh, Curtis Kan, Jo

Joshua Ji 3 Aug 20, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
Pointer networks Tensorflow2

Pointer networks Tensorflow2 原文:https://arxiv.org/abs/1506.03134 仅供参考与学习,内含代码备注 环境 tensorflow==2.6.0 tqdm matplotlib numpy 《pointer networks》阅读笔记 应用场景

HUANG HAO 7 Oct 27, 2022
Drone detection using YOLOv5

This drone detection system uses YOLOv5 which is a family of object detection architectures and we have trained the model on Drone Dataset. Overview I

Tushar Sarkar 27 Dec 20, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
More than a hundred strange attractors

dysts Analyze more than a hundred chaotic systems. Basic Usage Import a model and run a simulation with default initial conditions and parameter value

William Gilpin 185 Dec 23, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022