PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

Related tags

Deep LearningMemSeg
Overview

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments

Introduction

This repository is a PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments. This work is based on semseg.

The codebase mainly uses ResNet18, ResNet50 and MobileNet-V2 as backbone with ASPP module and can be easily adapted to other basic semantic segmentation structures.

Sample experimented dataset is RUGD.

Requirement

Hardware: >= 11G GPU memory

Software: PyTorch>=1.0.0, python3

Usage

For installation, follow installation steps below or recommend you to refer to the instructions described here.

For its pretrained ResNet50 backbone model, you can download from URL.

Getting Started

Installation

  1. Clone this repository.
git clone https://github.com/youngsjjn/MemSeg.git
  1. Install Python dependencies.
pip install -r requirements.txt

Implementation

  1. Download datasets (i.e. RUGD) and change the root of data path in config.

Download data list of RUGD here.

  1. Inference If you want to inference on pretrained models, download pretrained network in my drive and save them in ./exp/rugd/.

Inference "ResNet50 + Deeplabv3" without the memory module

sh tool/test.sh rugd deeplab50

Inference "ResNet50 + Deeplabv3" with the memory module

sh tool/test_mem.sh rugd deeplab50mem
Network mIoU
ResNet18 + PSPNet 33.42
ResNet18 + PSPNet (Memory) 34.13
ResNet18 + Deeplabv3 33.48
ResNet18 + Deeplabv3 (Memory) 35.07
ResNet50 + Deeplabv3 36.77
ResNet50 + Deeplabv3 (Memory) 37.71
  1. Train (Evaluation is included at the end of the training) Train "ResNet50 + Deeplabv3" without the memory module
sh tool/train.sh rugd deeplab50

Train "ResNet50 + Deeplabv3" without the memory module

sh tool/train_mem.sh rugd deeplab50mem

Here, the example is for training or testing on "ResNet50 + Deeplabv3". If you want to train other networks, please change "deeplab50" or "deeplab50mem" as a postfix of a config file name.

For example, train "ResNet18 + PSPNet" with the memory module:

sh tool/train_mem.sh rugd pspnet18mem

Citation

If you like our work and use the code or models for your research, please cite our work as follows.

@article{DBLP:journals/corr/abs-2108-05635,
  author    = {Youngsaeng Jin and
               David K. Han and
               Hanseok Ko},
  title     = {Memory-based Semantic Segmentation for Off-road Unstructured Natural
               Environments},
  journal   = {CoRR},
  volume    = {abs/2108.05635},
  year      = {2021},
  url       = {https://arxiv.org/abs/2108.05635},
  eprinttype = {arXiv},
  eprint    = {2108.05635},
  timestamp = {Wed, 18 Aug 2021 19:45:42 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-2108-05635.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Ramin Nakhli 71 Dec 04, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Colab notebook for openai/glide-text2im.

GLIDE text2im on Colab This repository provides a Colab notebook to produce images conditioned on text prompts with GLIDE [1]. Usage Run text2im.ipynb

Wok 19 Oct 19, 2022
Official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th ICML Workshop on AutoML)

Automated Learning Rate Scheduler for Large-Batch Training The official repository for Automated Learning Rate Scheduler for Large-Batch Training (8th

Kakao Brain 35 Jan 04, 2023
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022
Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Thang Vu 15 Dec 02, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
A keras implementation of ENet (abandoned for the foreseeable future)

ENet-keras This is an implementation of ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation, ported from ENet-training (lua-t

Pavlos 115 Nov 23, 2021
Open source Python module for computer vision

About PCV PCV is a pure Python library for computer vision based on the book "Programming Computer Vision with Python" by Jan Erik Solem. More details

Jan Erik Solem 1.9k Jan 06, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️

GAT - Graph Attention Network (PyTorch) 💻 + graphs + 📣 = ❤️ This repo contains a PyTorch implementation of the original GAT paper ( 🔗 Veličković et

Aleksa Gordić 1.9k Jan 09, 2023
Control-Robot-Arm-using-PS4-Controller - A Robotic Arm based on Raspberry Pi and Arduino that controlled by PS4 Controller

Control-Robot-Arm-using-PS4-Controller You can see all details about this Robot

MohammadReza Sharifi 5 Jan 01, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

MSG-Transformer Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens, by Jiemin

Hust Visual Learning Team 68 Nov 16, 2022