(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Related tags

Deep LearningClassSR
Overview

ClassSR

(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Paper

Authors: Xiangtao Kong, Hengyuan Zhao, Yu Qiao, Chao Dong

Dependencies

Codes

  • Our codes version based on BasicSR.

How to test a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV2K_valid).

  2. Download the divide_val.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) validation data.

cd codes/data_scripts
python extract_subimages_test.py
python divide_subimages_test.py
  1. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  2. Run testing for a single branch.

cd codes
python test.py -opt options/test/test_FSRCNN.yml
python test.py -opt options/test/test_CARN.yml
python test.py -opt options/test/test_SRResNet.yml
python test.py -opt options/test/test_RCAN.yml
  1. The output results will be sorted in ./results.

How to test ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV8K). Test8K contains the images (index 1401-1500) from DIV8K. Test2K/4K contain the images (index 1201-1300/1301-1400) from DIV8K which are downsampled to 2K and 4K resolution.

  2. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  3. Run testing for ClassSR.

cd codes
python test_ClassSR.py -opt options/test/test_ClassSR_FSRCNN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_CARN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_SRResNet.yml
python test_ClassSR.py -opt options/test/test_ClassSR_RCAN.yml
  1. The output results will be sorted in ./results.

How to train a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets(DIV2K) and validation dataset(Set5).

  2. Download the divide_train.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) training data.

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_train.py
python divide_subimages_train.py
  1. Run training for a single branch (default branch1, the simplest branch).
cd codes
python train.py -opt options/train/train_FSRCNN.yml
python train.py -opt options/train/train_CARN.yml
python train.py -opt options/train/train_SRResNet.yml
python train.py -opt options/train/train_RCAN.yml
  1. The experiments will be sorted in ./experiments.

How to train ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets (DIV2K) and validation dataset(DIV2K_valid, index 801-810).

  2. Generate training data (the all data(1.59M) in paper).

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_ClassSR.py
  1. Download pretrained models(pretrained branches) and move them to ./experiments/pretrained_models/ folder.

  2. Run training for ClassSR.

cd codes
python train_ClassSR.py -opt options/train/train_ClassSR_FSRCNN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_CARN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_SRResNet.yml
python train_ClassSR.py -opt options/train/train_ClassSR_RCAN.yml
  1. The experiments will be sorted in ./experiments.

Contact

Email: [email protected]

Owner
Xiangtao Kong
Xiangtao Kong
AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning

AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS 2020) Introduction AdaShare is a novel and differentiable approach fo

94 Dec 22, 2022
Real-time pose estimation accelerated with NVIDIA TensorRT

trt_pose Want to detect hand poses? Check out the new trt_pose_hand project for real-time hand pose and gesture recognition! trt_pose is aimed at enab

NVIDIA AI IOT 803 Jan 06, 2023
The Python3 import playground

The Python3 import playground I have been confused about python modules and packages, this text tries to clear the topic up a bit. Sources: https://ch

Michael Moser 5 Feb 22, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Pytorch GUI(demo) for iVOS(interactive VOS) and GIS (Guided iVOS)

GUI for iVOS(interactive VOS) and GIS (Guided iVOS) GUI Implementation of CVPR2021 paper "Guided Interactive Video Object Segmentation Using Reliabili

Yuk Heo 13 Dec 09, 2022
Manifold-Mixup implementation for fastai V2

Manifold Mixup Unofficial implementation of ManifoldMixup (Proceedings of ICML 19) for fast.ai (V2) based on Shivam Saboo's pytorch implementation of

Nestor Demeure 16 Jul 25, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis

Unified Instance and Knowledge Alignment Pretraining for Aspect-based Sentiment Analysis Requirements python 3.7 pytorch-gpu 1.7 numpy 1.19.4 pytorch_

12 Oct 29, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

โ€ƒโ€ƒโ€ƒ VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
The VeriNet toolkit for verification of neural networks

VeriNet The VeriNet toolkit is a state-of-the-art sound and complete symbolic interval propagation based toolkit for verification of neural networks.

9 Dec 21, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs ยป Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW ๐ŸŽ‰ ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos Introduction Point cloud videos exhibit irregularities and lack of or

Hehe Fan 101 Dec 29, 2022
Official Repository for the paper "Improving Baselines in the Wild".

iWildCam and FMoW baselines (WILDS) This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed) For general

Kazuki Irie 3 Nov 24, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
MoCap-Solver: A Neural Solver for Optical Motion Capture Data

MoCap-Solver is a data-driven-based robust marker denoising method, which takes raw mocap markers as input and outputs corresponding clean markers and skeleton motions.

55 Dec 28, 2022
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022