(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Related tags

Deep LearningClassSR
Overview

ClassSR

(CVPR2021) ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic

Paper

Authors: Xiangtao Kong, Hengyuan Zhao, Yu Qiao, Chao Dong

Dependencies

Codes

  • Our codes version based on BasicSR.

How to test a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV2K_valid).

  2. Download the divide_val.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) validation data.

cd codes/data_scripts
python extract_subimages_test.py
python divide_subimages_test.py
  1. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  2. Run testing for a single branch.

cd codes
python test.py -opt options/test/test_FSRCNN.yml
python test.py -opt options/test/test_CARN.yml
python test.py -opt options/test/test_SRResNet.yml
python test.py -opt options/test/test_RCAN.yml
  1. The output results will be sorted in ./results.

How to test ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the testing datasets (DIV8K). Test8K contains the images (index 1401-1500) from DIV8K. Test2K/4K contain the images (index 1201-1300/1301-1400) from DIV8K which are downsampled to 2K and 4K resolution.

  2. Download pretrained models and move them to ./experiments/pretrained_models/ folder.

  3. Run testing for ClassSR.

cd codes
python test_ClassSR.py -opt options/test/test_ClassSR_FSRCNN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_CARN.yml
python test_ClassSR.py -opt options/test/test_ClassSR_SRResNet.yml
python test_ClassSR.py -opt options/test/test_ClassSR_RCAN.yml
  1. The output results will be sorted in ./results.

How to train a single branch

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets(DIV2K) and validation dataset(Set5).

  2. Download the divide_train.log and move it to .codes/data_scripts/.

  3. Generate simple, medium, hard (class1, class2, class3) training data.

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_train.py
python divide_subimages_train.py
  1. Run training for a single branch (default branch1, the simplest branch).
cd codes
python train.py -opt options/train/train_FSRCNN.yml
python train.py -opt options/train/train_CARN.yml
python train.py -opt options/train/train_SRResNet.yml
python train.py -opt options/train/train_RCAN.yml
  1. The experiments will be sorted in ./experiments.

How to train ClassSR

  1. Clone this github repo.
git clone https://github.com/Xiangtaokong/ClassSR.git
cd ClassSR
  1. Download the training datasets (DIV2K) and validation dataset(DIV2K_valid, index 801-810).

  2. Generate training data (the all data(1.59M) in paper).

cd codes/data_scripts
python data_augmentation.py
python extract_subimages_ClassSR.py
  1. Download pretrained models(pretrained branches) and move them to ./experiments/pretrained_models/ folder.

  2. Run training for ClassSR.

cd codes
python train_ClassSR.py -opt options/train/train_ClassSR_FSRCNN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_CARN.yml
python train_ClassSR.py -opt options/train/train_ClassSR_SRResNet.yml
python train_ClassSR.py -opt options/train/train_ClassSR_RCAN.yml
  1. The experiments will be sorted in ./experiments.

Contact

Email: [email protected]

Owner
Xiangtao Kong
Xiangtao Kong
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
Voice Conversion Using Speech-to-Speech Neuro-Style Transfer

This repo contains the official implementation of the VAE-GAN from the INTERSPEECH 2020 paper Voice Conversion Using Speech-to-Speech Neuro-Style Transfer.

Ehab AlBadawy 93 Jan 05, 2023
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
Streamlit tool to explore coco datasets

What is this This tool given a COCO annotations file and COCO predictions file will let you explore your dataset, visualize results and calculate impo

Jakub Cieslik 75 Dec 16, 2022
Framework to build and train RL algorithms

RayLink RayLink is a RL framework used to build and train RL algorithms. RayLink was used to build a RL framework, and tested in a large-scale multi-a

Bytedance Inc. 32 Oct 07, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
This is the official implementation of Elaborative Rehearsal for Zero-shot Action Recognition (ICCV2021)

Elaborative Rehearsal for Zero-shot Action Recognition This is an official implementation of: Shizhe Chen and Dong Huang, Elaborative Rehearsal for Ze

DeLightCMU 26 Sep 24, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Code for Motion Representations for Articulated Animation paper

Motion Representations for Articulated Animation This repository contains the source code for the CVPR'2021 paper Motion Representations for Articulat

Snap Research 851 Jan 09, 2023
implementation for paper "ShelfNet for fast semantic segmentation"

ShelfNet-lightweight for paper (ShelfNet for fast semantic segmentation) This repo contains implementation of ShelfNet-lightweight models for real-tim

Juntang Zhuang 252 Sep 16, 2022