Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Overview

Learning What To Do by Simulating the Past

This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) algorithm introduced in the paper "Learning What To Do by Simulating the Past". This code is provided as is, and will not be maintained. Here we describe how to reproduce the experimental results reported in the paper. You can find video of policies trained with Deep RLSP here.

Citation

David Lindner, Rohin Shah, Pieter Abbeel, Anca Dragan. Learning What To Do by Simulating the Past. In International Conference on Learning Representations (ICLR), 2021.

@inproceedings{lindner2021learning,
    title={Learning What To Do by Simulating the Past},
    author={Lindner, David and Shah, Rohin and Abbeel, Pieter and Dragan, Anca},
    booktitle={International Conference on Learning Representations (ICLR)},
    year={2021},
}

Table of Contents

Set up the environment

There are two options to set up the environment to run the code: either using Docker, or setting up the environment manually using Anaconda. We recommend to use the Docker setup.

Docker

You can use Docker to set up the dependencies including MuJoCo automatically. To do this install Docker, then copy a valid MuJoCo key to docker/mjkey.txt, and execute the following commands:

docker build --tag deep-rlsp:1.0 docker
docker run -v `pwd`:/deep-rlsp/ -w /deep-rlsp/ -i -t deep-rlsp:1.0 bash
conda activate deep-rlsp

The first command sets up a container with all required dependencies including MuJoCo. The second command starts an interactive shell inside the container and the third command activates the Anaconda environment set up inside the container. You can now run all experiments inside this container. Note, that you might have to modify docker/Dockerfile to use Tensorflow with GPU support.

Manual setup

Alternatively, you can set up the same Anaconda environment manually. In this case MuJoCo has to be installed locally. If using a non-standard location, the environment variables MUJOCO_PY_MJKEY_PATH and MUJOCO_PY_MUJOCO_PATH have to be set accordingly.

To perform the manual setup, install Anaconda locally and run the following commands to set up the environment:

conda env create -f docker/environment.yml
conda activate deep-rlsp
pip install mujoco-py==2.0.2.9
pip install -e .
conda activate deep-rlsp

This sets up an Anaconda environment with the required dependencies and activates it, which can then be used to run the code.

Reproducing the experiments

Now we describe how to reproduce the experiments described in the paper. We first describe the experiments in Gridworld environments, discussed in Section 3.2, and then the experiments in MuJoCo environments, discussed in Sections 3.3 and 3.4. For each of these we describe how to run Deep RLSP, the ablations discussed in the paper, and GAIL as a baseline.

Gridworld experiments

To run the Gridworld experiments reported in Section 3.2, you first have to train an inverse dynamics model for each environment:

python scripts/train_inverse_dynamics.py --gridworlds RoomDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds ApplesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds TrainDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesDefault-v0
python scripts/train_inverse_dynamics.py --gridworlds BatteriesEasy-v0
python scripts/train_inverse_dynamics.py --gridworlds RoomBad-v0

The models will be saved in tf_ckpt, and will have names such as tf_ckpt_mlp_RoomDefault-v0_20210313_160730. You might have to create the folder tf_ckpt before running the models.

You can then run the experiments with the following commands:

python src/deep_rlsp/run.py with latent_rlsp_config room_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218
python src/deep_rlsp/run.py with latent_rlsp_config train_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_TrainDefault-v0_20200930_132234
python src/deep_rlsp/run.py with latent_rlsp_config apples_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_ApplesDefault-v0_20200930_132414
python src/deep_rlsp/run.py with latent_rlsp_config batteries_easy inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config batteries_default inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_mlp_BatteriesDefault-v0_20200930_123401
python src/deep_rlsp/run.py with latent_rlsp_config room_bad inverse_dynamics_model_checkpoint=tf_ckpt/tf_ckpt_vae_RoomDefault-v0_20200930_132218

adapting the paths of the inverse dynamics model.

You can run the "AverageFeatures" ablation by replacing latent_rlsp_config with latent_rlsp_ablation in the commands above.

MuJoCo experiments

To reproduce our experiments in the MuJoCo simulator, that we report in Sections 3.3 and 3.4, you need to perform the following steps:

  1. Obtain an original policy
  2. Run Deep RLSP
  3. Evaluate the results
  4. Compare to baselines / ablations

We now describe each step in turn.

Obtaining an original policy

We consider two different ways of obtaining policies to immitate:

  1. Obtain policy by optimizing a given reward function
  2. Obtain policy by running Dynamics-Aware Unsupervised Discovery of Skills (DADS)

Obtain policy by optimizing a given reward function

To train a policy on the reward function of a given MuJoCo environment, use the scripts/train_sac.py script. With the following commands you can train policies on the environments we discuss in the paper and save them in the policies/ folder:

python scripts/train_sac.py InvertedPendulum-v2 policies/sac_pendulum_6e4 --timesteps 60000
python scripts/train_sac.py HalfCheetah-FW-v2 policies/sac_cheetah_fw_2e6 --timesteps 2000000
python scripts/train_sac.py HalfCheetah-BW-v2 policies/sac_cheetah_bw_2e6 --timesteps 2000000
python scripts/train_sac.py Hopper-v2 policies/sac_hopper_2e6 --timesteps 2000000

This uses the soft actor-critic algorithm to train a policy using the hyperparameters from rl-baselines-zoo. The hyperparameters are defined in src/deep_rlsp/solvers/__init__.py.

For convenience, we provide trained policies in the policies/ folder of this repository.

Obtain policy by running DADS

We run DADS using the code provided by the authors. To reproduce the our experiments, we provide rollouts sampled from the jumping and balancing skills in the folder skills/.

Run Deep RLSP

We are now ready to run the full Deep RLSP algorithm. The main file to run experiments is located at src/deep_rlsp/run_mujoco.py. The following commands reproduce the experiments discussed in the paper:

Pendulum

python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base pendulum n_sample_states=50

Cheetah running forward

python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_fw n_sample_states=50

Cheetah running backward

python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_bw n_sample_states=50

Hopper

python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base hopper n_sample_states=50

Cheetah balancing skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/balancing_rollouts.pkl" n_sample_states=50

Cheetah jumping skill

python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=1
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=10
python src/deep_rlsp/run_mujoco.py with base cheetah_skill current_state_file="skills/jumping_rollouts.pkl" n_sample_states=50

The results will be saved in the results/ folder. The trained (VAE and dynamics) models will be saved in tf_ckpt.

Evaluate the results

In the paper, we evaluate Deep RLSP in two ways:

  1. Train a new policy on the inferred reward function from Deep RLSP and evaluate this policy (as in Table 1)
  2. Evaluate the policy trained during Deep RLSP (for the balancing and jumping skills)

Train a new policy on the inferred reward function

To produce the results provided in Table 1 in the paper, we run SAC on the final reward function inferred by the Deep RLSP algorithm. To do this run the following command

python scripts/mujoco_evaluate_inferred_reward.py with experiment_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

providing the subfolder of results/ that corresponds to the experiment you want to evaluate. This creates a sub-folder in results/mujoco/eval that contains the trained policy.

Then, to evaluate this policy, run

python scripts/evaluate_policy.py results/mujoco/eval/20200605_203113_20200603_220928_InvertedPendulum-v2_optimal_1/policy.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

Evaluate the policy trained during Deep RLSP

The policies trained during Deep RLSP are saved in the results folder of a specific run as rlsp_policy_1.zip, rlsp_policy_2.zip, ...

To evaluate these policies, run

python scripts/evaluate_policy.py results/mujoco/20200528_150813_InvertedPendulum-v2_optimal/rlsp_policy_112.zip sac InvertedPendulum-v2 --num_rollouts 100

for the corresponding policy file. This samples 100 trajectories from the policy and determines the mean and standard deviation of the policy return.

The same script can also be used to visualize the policies using the --render or --out_video arguments.

AverageFeatures and Waypoints ablations

To ensure comparability with a limited number of random seeds, we run the ablations with the same trained VAE and dynamics models and the same input states as Deep RLSP. This can be done the following commands:

python src/deep_rlsp/ablation_AverageFeatures.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal
python src/deep_rlsp/ablation_Waypoints.py with result_folder=results/mujoco/20200528_150813_InvertedPendulum-v2_optimal

passing a folder containing the corresponding results of Deep RLSP as an argument. The policy returned by this baseline algorithm can be found in results/mujoco/, and they can also be visualized and evaluated using the scripts/evaluate_policy.py script.

Compare to GAIL

Running Generative Adversarial Imitation Learning (GAIL) requires the imitation library. You can install it using:

pip install imitation==0.1.1

To run GAIL, we provide demonstrations from the expert policies in the correct format in the demonstrations folder. You can create demonstration data from already trained expert policies by running:

python scripts/create_demonstrations.py policies/sac_cheetah_fw_2e6.zip demonstrations/sac_cheetah_fw_traj_len_{}_seed_{}.pkl 10 generate_seed HalfCheetah-FW-v2 1

Then you can run GAIL on the demonstration data by running:

python scripts/run_gail.py with gail half_cheetah env_name='HalfCheetah-FW-v2' rollout_path=demonstrations/sac_cheetah_fw_traj_len_1_seed_22750069.pkl log_dir=./gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/

To visualize the resulting policies:

python scripts/evaluate_policy.py gail_logs/gail_cheetah_fw_len_1_demoseed_22750069/checkpoints/final/gen_policy gail HalfCheetah-FW-v2 --render --out_video=videos/gail_balancing_len_1.mp4

Code quality

We use black for code formatting, flake8 for linting, and mypy to check type hints. You can run all checks with bash code_checks.sh and unit tests with python setup.py test.

Owner
Center for Human-Compatible AI
CHAI seeks to develop the conceptual and technical wherewithal to reorient the general thrust of AI research towards provably beneficial systems.
Center for Human-Compatible AI
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
This is official implementaion of paper "Token Shift Transformer for Video Classification".

This is official implementaion of paper "Token Shift Transformer for Video Classification". We achieve SOTA performance 80.40% on Kinetics-400 val. Paper link

VideoNet 60 Dec 30, 2022
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
🍷 Gracefully claim weekly free games and monthly content from Epic Store.

EPIC 免费人 🚀 优雅地领取 Epic 免费游戏 Introduction 👋 Epic AwesomeGamer 帮助玩家优雅地领取 Epic 免费游戏。 使用 「Epic免费人」可以实现如下需求: get:搬空游戏商店,获取所有常驻免费游戏与免费附加内容; claim:领取周免游戏及其免

571 Dec 28, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
Model search is a framework that implements AutoML algorithms for model architecture search at scale

Model search (MS) is a framework that implements AutoML algorithms for model architecture search at scale. It aims to help researchers speed up their exploration process for finding the right model a

Google 3.2k Dec 31, 2022
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

程星 38 Nov 08, 2022
This repository contains code to train and render Mixture of Volumetric Primitives (MVP) models

Mixture of Volumetric Primitives -- Training and Evaluation This repository contains code to train and render Mixture of Volumetric Primitives (MVP) m

Meta Research 125 Dec 29, 2022
Libraries, tools and tasks created and used at DeepMind Robotics.

dm_robotics: Libraries, tools, and tasks created and used for Robotics research at DeepMind. Package overview Package Summary Transformations Rigid bo

DeepMind 273 Jan 06, 2023
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Pytorch and Keras Implementations of Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects.

The repository contains the implementations for Hyperspectral Image Classification -- Traditional to Deep Models: A Survey for Future Prospects. Model

Ankur Deria 115 Jan 06, 2023
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation

A Differentiable Recipe for Learning Visual Non-Prehensile Planar Manipulation This repository contains the source code of the paper A Differentiable

Bernardo Aceituno 2 May 05, 2022
Official Pytorch implementation of "Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021)

Unbiased Classification Through Bias-Contrastive and Bias-Balanced Learning (NeurIPS 2021) Official Pytorch implementation of Unbiased Classification

Youngkyu 17 Jan 01, 2023