Official Implementation of CVPR 2022 paper: "Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning"

Overview

(CVPR 2022) Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning ArXiv

This repo contains Official Implementation of our CVPR 2022 paper: Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning.

1. Abstract

Class Incremental Learning (CIL) aims at learning a classifier in a phase-by-phase manner, in which only data of a subset of the classes are provided at each phase. Previous works mainly focus on mitigating forgetting in phases after the initial one. However, we find that improving CIL at its initial phase is also a promising direction. Specifically, we experimentally show that directly encouraging CIL Learner at the initial phase to output similar representations as the model jointly trained on all classes can greatly boost the CIL performance. Motivated by this, we study the difference between a na"ively-trained initial-phase model and the oracle model. Specifically, since one major difference between these two models is the number of training classes, we investigate how such difference affects the model representations. We find that, with fewer training classes, the data representations of each class lie in a long and narrow region; with more training classes, the representations of each class scatter more uniformly. Inspired by this observation, we propose Class-wise Decorrelation (CwD) that effectively regularizes representations of each class to scatter more uniformly, thus mimicking the model jointly trained with all classes (i.e., the oracle model). Our CwD is simple to implement and easy to plug into existing methods. Extensive experiments on various benchmark datasets show that CwD consistently and significantly improves the performance of existing state-of-the-art methods by around 1% to 3%.


2. Instructions to Run Our Code

Current codebase only contain experiments on LUCIR with CIFAR100 and ImageNet100. Code reproducing results based on PODNet and AANet are based on their repo and will be coming soon!


CIFAR100 Experiments w/ LUCIR

No need to download the datasets, everything will be dealt with automatically.

For LUCIR baseline, simply first navigate under "src" folder and run:

bash exp_cifar_lucir.sh

For LUCIR + CwD, first navigate under "src" folder and run:

bash exp_cifar_lucir_cwd.sh

ImageNet100 Experiments w/ LUCIR

To run ImageNet100, please follow the following two steps:

Step 1:

download and extract imagenet dataset under "src/data/imagenet" folder.

Then, under "src/data/imagenet", run:

python3 gen_lst.py

This command will generate two list that determine the order of classes for class incremental learning. The class order is shuffled by seed 1993 like most previous works.


Step 2:

For LUCIR baseline, first navigate under "src" folder and run:

bash exp_im100_lucir.sh

For LUCIR+CWD, first navigate under "src" folder and run:

bash exp_im100_lucir_cwd.sh

Some Comments on Running Scripts.

For "SEED" variable in the scripts, it is not the seed that used to shuffle the class order, it is the seed that determines model initialisation/data loader sampling, etc. We vary "SEED" from 0,1,2 and average the Average Incremental Accuracy to obtain results reported in the paper.


3. For customized usage

To use our CwD loss in your own project, simply copy and paste the CwD loss implemented in "src/approach/aux_loss.py" will be fine.


4. Citation

If you find our repo/paper helpful, please consider citing our work :)

@article{shi2021mimicking,
  title={Mimicking the Oracle: An Initial Phase Decorrelation Approach for Class Incremental Learning},
  author={Shi, Yujun and Zhou, Kuangqi and Liang, Jian and Jiang, Zihang and Feng, Jiashi and Torr, Philip and Bai, Song and Tan, Vincent YF},
  journal={arXiv preprint arXiv:2112.04731},
  year={2021}
}

5. Contact

Yujun Shi ([email protected])

6. Acknowledgements

Our code is based on FACIL, one of the most well-written CIL library in my opinion:)

7. Some Additional Remarks

Based on the original implementation of FACIL, I also implemented Distributed Data Parallel to enable multi-GPU training. However, it seems that the performance is not as good as single card training (about 0.5% lower). Therefore, in all experiments, I still use single card training.

Owner
Yujun Shi
PhD @ NUS
Yujun Shi
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

Ren Tianhe 49 Nov 10, 2022
Code accompanying "Evolving spiking neuron cellular automata and networks to emulate in vitro neuronal activity," accepted to IEEE SSCI ICES 2021

Evolving-spiking-neuron-cellular-automata-and-networks-to-emulate-in-vitro-neuronal-activity Code accompanying "Evolving spiking neuron cellular autom

SOCRATES: Self-Organizing Computational substRATES 2 Dec 02, 2022
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
​ This is the Pytorch implementation of Progressive Attentional Manifold Alignment.

PAMA This is the Pytorch implementation of Progressive Attentional Manifold Alignment. Requirements python 3.6 pytorch 1.2.0+ PIL, numpy, matplotlib C

98 Nov 15, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Official implementation of Sparse Transformer-based Action Recognition

STAR Official implementation of S parse T ransformer-based A ction R ecognition Dataset download NTU RGB+D 60 action recognition of 2D/3D skeleton fro

Chonghan_Lee 15 Nov 02, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
BDDM: Bilateral Denoising Diffusion Models for Fast and High-Quality Speech Synthesis

Bilateral Denoising Diffusion Models (BDDMs) This is the official PyTorch implementation of the following paper: BDDM: BILATERAL DENOISING DIFFUSION M

172 Dec 23, 2022
Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Vertex AI: Serverless framework for MLOPs (ESP / ENG) Español Qué es esto? Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflo

Hernán Escudero 2 Apr 28, 2022
Pytorch Lightning Distributed Accelerators using Ray

Distributed PyTorch Lightning Training on Ray This library adds new PyTorch Lightning accelerators for distributed training using the Ray distributed

166 Dec 27, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022