TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

Related tags

Deep Learningtorchcv
Overview

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

@misc{you2019torchcv,
    author = {Ansheng You and Xiangtai Li and Zhen Zhu and Yunhai Tong},
    title = {TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision},
    howpublished = {\url{https://github.com/donnyyou/torchcv}},
    year = {2019}
}

This repository provides source code for most deep learning based cv problems. We'll do our best to keep this repository up-to-date. If you do find a problem about this repository, please raise an issue or submit a pull request.

- Semantic Flow for Fast and Accurate Scene Parsing
- Code and models: https://github.com/lxtGH/SFSegNets

Implemented Papers

  • Image Classification

    • VGG: Very Deep Convolutional Networks for Large-Scale Image Recognition
    • ResNet: Deep Residual Learning for Image Recognition
    • DenseNet: Densely Connected Convolutional Networks
    • ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
    • ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design
    • Partial Order Pruning: for Best Speed/Accuracy Trade-off in Neural Architecture Search
  • Semantic Segmentation

    • DeepLabV3: Rethinking Atrous Convolution for Semantic Image Segmentation
    • PSPNet: Pyramid Scene Parsing Network
    • DenseASPP: DenseASPP for Semantic Segmentation in Street Scenes
    • Asymmetric Non-local Neural Networks for Semantic Segmentation
    • Semantic Flow for Fast and Accurate Scene Parsing
  • Object Detection

    • SSD: Single Shot MultiBox Detector
    • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    • YOLOv3: An Incremental Improvement
    • FPN: Feature Pyramid Networks for Object Detection
  • Pose Estimation

    • CPM: Convolutional Pose Machines
    • OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields
  • Instance Segmentation

    • Mask R-CNN
  • Generative Adversarial Networks

    • Pix2pix: Image-to-Image Translation with Conditional Adversarial Nets
    • CycleGAN: Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.

QuickStart with TorchCV

Now only support Python3.x, pytorch 1.3.

pip3 install -r requirements.txt
cd lib/exts
sh make.sh

Performances with TorchCV

All the performances showed below fully reimplemented the papers' results.

Image Classification

  • ImageNet (Center Crop Test): 224x224
Model Train Test Top-1 Top-5 BS Iters Scripts
ResNet50 train val 77.54 93.59 512 30W ResNet50
ResNet101 train val 78.94 94.56 512 30W ResNet101
ShuffleNetV2x0.5 train val 60.90 82.54 1024 40W ShuffleNetV2x0.5
ShuffleNetV2x1.0 train val 69.71 88.91 1024 40W ShuffleNetV2x1.0
DFNetV1 train val 70.99 89.68 1024 40W DFNetV1
DFNetV2 train val 74.22 91.61 1024 40W DFNetV2

Semantic Segmentation

  • Cityscapes (Single Scale Whole Image Test): Base LR 0.01, Crop Size 769
Model Backbone Train Test mIOU BS Iters Scripts
PSPNet 3x3-Res101 train val 78.20 8 4W PSPNet
DeepLabV3 3x3-Res101 train val 79.13 8 4W DeepLabV3
  • ADE20K (Single Scale Whole Image Test): Base LR 0.02, Crop Size 520
Model Backbone Train Test mIOU PixelACC BS Iters Scripts
PSPNet 3x3-Res50 train val 41.52 80.09 16 15W PSPNet
DeepLabv3 3x3-Res50 train val 42.16 80.36 16 15W DeepLabV3
PSPNet 3x3-Res101 train val 43.60 81.30 16 15W PSPNet
DeepLabv3 3x3-Res101 train val 44.13 81.42 16 15W DeepLabV3

Object Detection

  • Pascal VOC2007/2012 (Single Scale Test): 20 Classes
Model Backbone Train Test mAP BS Epochs Scripts
SSD300 VGG16 07+12_trainval 07_test 0.786 32 235 SSD300
SSD512 VGG16 07+12_trainval 07_test 0.808 32 235 SSD512
Faster R-CNN VGG16 07_trainval 07_test 0.706 1 15 Faster R-CNN

Pose Estimation

  • OpenPose: Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields

Instance Segmentation

  • Mask R-CNN

Generative Adversarial Networks

  • Pix2pix
  • CycleGAN

DataSets with TorchCV

TorchCV has defined the dataset format of all the tasks which you could check in the subdirs of data. Following is an example dataset directory trees for training semantic segmentation. You could preprocess the open datasets with the scripts in folder data/seg/preprocess

Dataset
    train
        image
            00001.jpg/png
            00002.jpg/png
            ...
        label
            00001.png
            00002.png
            ...
    val
        image
            00001.jpg/png
            00002.jpg/png
            ...
        label
            00001.png
            00002.png
            ...

Commands with TorchCV

Take PSPNet as an example. ("tag" could be any string, include an empty one.)

  • Training
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh train tag
  • Resume Training
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh train tag
  • Validate
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh val tag
  • Testing:
cd scripts/seg/cityscapes/
bash run_fs_pspnet_cityscapes_seg.sh test tag

Demos with TorchCV

Example output of VGG19-OpenPose

Example output of VGG19-OpenPose

A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022
SPEAR: Semi suPErvised dAta progRamming

Semi-Supervised Data Programming for Data Efficient Machine Learning SPEAR is a library for data programming with semi-supervision. The package implem

decile-team 91 Dec 06, 2022
PyTorch implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets

Simple PyTorch Implementation of "Grokking" Implementation of Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets Usage Running

Teddy Koker 15 Sep 29, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
Deep Multimodal Neural Architecture Search

MMNas: Deep Multimodal Neural Architecture Search This repository corresponds to the PyTorch implementation of the MMnas for visual question answering

Vision and Language Group@ MIL 23 Dec 21, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Code for the paper "Balancing Training for Multilingual Neural Machine Translation, ACL 2020"

Balancing Training for Multilingual Neural Machine Translation Implementation of the paper Balancing Training for Multilingual Neural Machine Translat

Xinyi Wang 21 May 18, 2022
Breast Cancer Classification Model is applied on a different dataset

Breast Cancer Classification Model is applied on a different dataset

1 Feb 04, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
PyTorch implementation of Rethinking Positional Encoding in Language Pre-training

TUPE PyTorch implementation of Rethinking Positional Encoding in Language Pre-training. Quickstart Clone this repository. git clone https://github.com

Jake Tae 5 Jan 27, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Segment axon and myelin from microscopy data using deep learning

Segment axon and myelin from microscopy data using deep learning. Written in Python. Using the TensorFlow framework. Based on a convolutional neural network architecture. Pixels are classified as eit

NeuroPoly 103 Nov 29, 2022
Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving This is the source code for our paper Frequency Domain Image Tran

Mu Cai 52 Dec 23, 2022
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
GoodNews Everyone! Context driven entity aware captioning for news images

This is the code for a CVPR 2019 paper, called GoodNews Everyone! Context driven entity aware captioning for news images. Enjoy! Model preview: Huge T

117 Dec 19, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023