PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Overview

Recommender System in PyTorch

Implementations of various top-N recommender systems in PyTorch for practice.

Movielens 100k & 1M are used as datasets.

Available models

Model Paper
BPRMF Steffen Rendle et al., BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI 2009. Link
ItemKNN Jun Wang et al., Unifying user-based and item-based collaborative filtering approaches by similarity fusion. SIGIR 2006. Link
PureSVD Paolo Cremonesi et al., Performance of Recommender Algorithms on Top-N Recommendation Tasks. RecSys 2010. Link
SLIM Xia Ning et al., SLIM: Sparse Linear Methods for Top-N Recommender Systems. ICDM 2011. Link
P3a Colin Cooper et al., Random Walks in Recommender Systems: Exact Computation and Simulations. WWW 2014. Link
RP3b Bibek Paudel et al., Updatable, accurate, diverse, and scalablerecommendations for interactive applications. TiiS 2017. Link
DAE, CDAE Yao Wu et al., Collaborative denoising auto-encoders for top-n recommender systems. WSDM 2016.Link
MultVAE Dawen Liang et al., Variational Autoencoders for Collaborative Filtering. WWW 2018. Link
EASE Harald Steck, Embarrassingly Shallow Autoencoders for Sparse Data. WWW 2019. Link
NGCF Xiang Wang, et al., Neural Graph Collaborative Filtering. SIGIR 2019. Link
LightGCN Xiangnan He, et al., LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020. Link

Enable C++ evaluation

To evaluate with C++ backend, you have to compile C++ and cython with the following script:

python setup.py build_ext --inplace

If compiled NOT successfully, "evaluation with python backend.." will be printed in the beginning.

How to run

  1. Edit experiment configurations in config.py
  2. Edit model hyperparameters you choose in conf/[MODEL_NAME]
  3. run main.py

Implement your own model

You can add your own model into the framework if:

  1. Your model inherits BaseModel class in models/BaseModel.py
  2. Implement necessary methods and add additional methods if you want.
  3. Make YourModel.conf file in conf
  4. Add your model in models.__init__

Reference

Some model implementations and util functions refers to these nice repositories.

Owner
Yoonki Jeong
Research Engineer at NAVER Corp.
Yoonki Jeong
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Source code for CVPR2022 paper "Abandoning the Bayer-Filter to See in the Dark"

Abandoning the Bayer-Filter to See in the Dark (CVPR 2022) Paper: https://arxiv.org/abs/2203.04042 (Arxiv version) This code includes the training and

74 Dec 15, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks

Spontaneous Facial Micro Expression Recognition using 3D Spatio-Temporal Convolutional Neural Networks Abstract Facial expression recognition in video

Bogireddy Sai Prasanna Teja Reddy 103 Dec 29, 2022
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning

Unofficial PyTorch implementation of "Zero-Shot" Super-Resolution using Deep Internal Learning Unofficial Implementation of 1712.06087 "Zero-Shot" Sup

Jacob Gildenblat 196 Nov 27, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes.

Polygon-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable polygon prediction boxes. Section I. Description The codes a

xinzelee 226 Jan 05, 2023
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
Source code for "Taming Visually Guided Sound Generation" (Oral at the BMVC 2021)

Taming Visually Guided Sound Generation • [Project Page] • [ArXiv] • [Poster] • • Listen for the samples on our project page. Overview We propose to t

Vladimir Iashin 226 Jan 03, 2023
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
[UNMAINTAINED] Automated machine learning for analytics & production

auto_ml Automated machine learning for production and analytics Installation pip install auto_ml Getting started from auto_ml import Predictor from au

Preston Parry 1.6k Jan 02, 2023
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022