PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Overview

Recommender System in PyTorch

Implementations of various top-N recommender systems in PyTorch for practice.

Movielens 100k & 1M are used as datasets.

Available models

Model Paper
BPRMF Steffen Rendle et al., BPR: Bayesian Personalized Ranking from Implicit Feedback. UAI 2009. Link
ItemKNN Jun Wang et al., Unifying user-based and item-based collaborative filtering approaches by similarity fusion. SIGIR 2006. Link
PureSVD Paolo Cremonesi et al., Performance of Recommender Algorithms on Top-N Recommendation Tasks. RecSys 2010. Link
SLIM Xia Ning et al., SLIM: Sparse Linear Methods for Top-N Recommender Systems. ICDM 2011. Link
P3a Colin Cooper et al., Random Walks in Recommender Systems: Exact Computation and Simulations. WWW 2014. Link
RP3b Bibek Paudel et al., Updatable, accurate, diverse, and scalablerecommendations for interactive applications. TiiS 2017. Link
DAE, CDAE Yao Wu et al., Collaborative denoising auto-encoders for top-n recommender systems. WSDM 2016.Link
MultVAE Dawen Liang et al., Variational Autoencoders for Collaborative Filtering. WWW 2018. Link
EASE Harald Steck, Embarrassingly Shallow Autoencoders for Sparse Data. WWW 2019. Link
NGCF Xiang Wang, et al., Neural Graph Collaborative Filtering. SIGIR 2019. Link
LightGCN Xiangnan He, et al., LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation. SIGIR 2020. Link

Enable C++ evaluation

To evaluate with C++ backend, you have to compile C++ and cython with the following script:

python setup.py build_ext --inplace

If compiled NOT successfully, "evaluation with python backend.." will be printed in the beginning.

How to run

  1. Edit experiment configurations in config.py
  2. Edit model hyperparameters you choose in conf/[MODEL_NAME]
  3. run main.py

Implement your own model

You can add your own model into the framework if:

  1. Your model inherits BaseModel class in models/BaseModel.py
  2. Implement necessary methods and add additional methods if you want.
  3. Make YourModel.conf file in conf
  4. Add your model in models.__init__

Reference

Some model implementations and util functions refers to these nice repositories.

Owner
Yoonki Jeong
Research Engineer at NAVER Corp.
Yoonki Jeong
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Official repository for Natural Image Matting via Guided Contextual Attention

GCA-Matting: Natural Image Matting via Guided Contextual Attention The source codes and models of Natural Image Matting via Guided Contextual Attentio

Li Yaoyi 349 Dec 26, 2022
NICE-GAN — Official PyTorch Implementation Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

NICE-GAN-pytorch - Official PyTorch implementation of NICE-GAN: Reusing Discriminators for Encoding: Towards Unsupervised Image-to-Image Translation

Runfa Chen 208 Nov 25, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
A light-weight image labelling tool for Python designed for creating segmentation data sets.

An image labelling tool for creating segmentation data sets, for Django and Flask.

117 Nov 21, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
Omnidirectional Scene Text Detection with Sequential-free Box Discretization (IJCAI 2019). Including competition model, online demo, etc.

Box_Discretization_Network This repository is built on the pytorch [maskrcnn_benchmark]. The method is the foundation of our ReCTs-competition method

Yuliang Liu 266 Nov 24, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Physics-informed Neural Operator for Learning Partial Differential Equation

PINO Physics-informed Neural Operator for Learning Partial Differential Equation Abstract: Machine learning methods have recently shown promise in sol

107 Jan 02, 2023
This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Swin Transformer This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8. Introd

maggiez 87 Dec 21, 2022
FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction

FaceExtraction FaceOcc: A Diverse, High-quality Face Occlusion Dataset for Human Face Extraction Occlusions often occur in face images in the wild, tr

16 Dec 14, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Repository for Driving Style Recognition algorithms for Autonomous Vehicles

Driving Style Recognition Using Interval Type-2 Fuzzy Inference System and Multiple Experts Decision Making Created by Iago Pachêco Gomes at USP - ICM

Iago Gomes 9 Nov 28, 2022
2nd solution of ICDAR 2021 Competition on Scientific Literature Parsing, Task B.

TableMASTER-mmocr Contents About The Project Method Description Dependency Getting Started Prerequisites Installation Usage Data preprocess Train Infe

Jianquan Ye 298 Dec 21, 2022
The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Guoji Fu 18 Nov 14, 2022
Code to reproduce the results in the paper "Tensor Component Analysis for Interpreting the Latent Space of GANs".

Tensor Component Analysis for Interpreting the Latent Space of GANs [ paper | project page ] Code to reproduce the results in the paper "Tensor Compon

James Oldfield 4 Jun 17, 2022