PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

Overview

PERIN: Permutation-invariant Semantic Parsing

David Samuel & Milan Straka

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics


Paper
Pretrained models
Interactive demo on Google Colab

Overall architecture



PERIN is a universal sentence-to-graph neural network architecture modeling semantic representation from input sequences.

The main characteristics of our approach are:

  • Permutation-invariant model: PERIN is, to our best knowledge, the first graph-based semantic parser that predicts all nodes at once in parallel and trains them with a permutation-invariant loss function.
  • Relative encoding: We present a substantial improvement of relative encoding of node labels, which allows the use of a richer set of encoding rules.
  • Universal architecture: Our work presents a general sentence-to-graph pipeline adaptable for specific frameworks only by adjusting pre-processing and post-processing steps.

Our model was ranked among the two winning systems in both the cross-framework and the cross-lingual tracks of MRP 2020 and significantly advanced the accuracy of semantic parsing from the last year's MRP 2019.



This repository provides the official PyTorch implementation of our paper "ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN" together with pretrained base models for all five frameworks from MRP 2020: AMR, DRG, EDS, PTG and UCCA.



How to run

🐾   Clone repository and install the Python requirements

git clone https://github.com/ufal/perin.git
cd perin

pip3 install -r requirements.txt 
pip3 install git+https://github.com/cfmrp/mtool.git#egg=mtool

🐾   Download and pre-process the dataset

Download the treebanks into ${data_dir} and split the cross-lingual datasets into training and validation parts by running:

./scripts/split_dataset.sh "path_to_a_dataset.mrp"

Preprocess and cache the dataset (computing the relative encodings can take up to several hours):

python3 preprocess.py --config config/base_amr.yaml --data_directory ${data_dir}

You should also download CzEngVallex if you are going to parse PTG:

curl -O https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-1512/czengvallex.zip
unzip czengvallex.zip
rm frames_pairs.xml czengvallex.zip

🐾   Train

To train a shared model for the English and Chinese AMR, run the following script. Other configurations are located in the config folder.

python3 train.py --config config/base_amr.yaml --data_directory ${data_dir} --save_checkpoints --log_wandb

Note that the companion file in needed only to provide the lemmatized forms, so it's also possible to train without it (but that will most likely negatively influence the accuracy of label prediction) -- just set the companion paths to None.

🐾   Inference

You can run the inference on the validation and test datasets by running:

python3 inference.py --checkpoint "path_to_pretrained_model.h5" --data_directory ${data_dir}

Citation

@inproceedings{Sam:Str:20,
  author = {Samuel, David and Straka, Milan},
  title = {{{\'U}FAL} at {MRP}~2020:
           {P}ermutation-Invariant Semantic Parsing in {PERIN}},
  booktitle = CONLL:20:U,
  address = L:CONLL:20,
  pages = {\pages{--}{53}{64}},
  year = 2020
}
Owner
ÚFAL
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University
ÚFAL
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
MLJetReconstruction - using machine learning to reconstruct jets for CMS

MLJetReconstruction - using machine learning to reconstruct jets for CMS The C++ data extraction code used here was based heavily on that foundv here.

ALPhA Davidson 0 Nov 17, 2021
Minimal implementation of PAWS (https://arxiv.org/abs/2104.13963) in TensorFlow.

PAWS-TF 🐾 Implementation of Semi-Supervised Learning of Visual Features by Non-Parametrically Predicting View Assignments with Support Samples (PAWS)

Sayak Paul 43 Jan 08, 2023
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Research shows Google collects 20x more data from Android than Apple collects from iOS. Block this non-consensual telemetry using pihole blocklists.

pihole-antitelemetry Research shows Google collects 20x more data from Android than Apple collects from iOS. Block both using these pihole lists. Proj

Adrian Edwards 290 Jan 09, 2023
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

42 Jul 25, 2022
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Vector Quantized Diffusion Model for Text-to-Image Synthesis

Vector Quantized Diffusion Model for Text-to-Image Synthesis Due to company policy, I have to set microsoft/VQ-Diffusion to private for now, so I prov

Shuyang Gu 294 Jan 05, 2023
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations.

IllustrationGAN A simple, clean TensorFlow implementation of Generative Adversarial Networks with a focus on modeling illustrations. Generated Images

268 Nov 27, 2022
Vehicle speed detection with python

Vehicle-speed-detection In the project simulate the tracker.py first then simulate the SpeedDetector.py. Finally, a new window pops up and the output

3 Dec 15, 2022
CVPR 2021 Official Pytorch Code for UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training

UC2 UC2: Universal Cross-lingual Cross-modal Vision-and-Language Pre-training Mingyang Zhou, Luowei Zhou, Shuohang Wang, Yu Cheng, Linjie Li, Zhou Yu,

Mingyang Zhou 28 Dec 30, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022