PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

Overview

PERIN: Permutation-invariant Semantic Parsing

David Samuel & Milan Straka

Charles University
Faculty of Mathematics and Physics
Institute of Formal and Applied Linguistics


Paper
Pretrained models
Interactive demo on Google Colab

Overall architecture



PERIN is a universal sentence-to-graph neural network architecture modeling semantic representation from input sequences.

The main characteristics of our approach are:

  • Permutation-invariant model: PERIN is, to our best knowledge, the first graph-based semantic parser that predicts all nodes at once in parallel and trains them with a permutation-invariant loss function.
  • Relative encoding: We present a substantial improvement of relative encoding of node labels, which allows the use of a richer set of encoding rules.
  • Universal architecture: Our work presents a general sentence-to-graph pipeline adaptable for specific frameworks only by adjusting pre-processing and post-processing steps.

Our model was ranked among the two winning systems in both the cross-framework and the cross-lingual tracks of MRP 2020 and significantly advanced the accuracy of semantic parsing from the last year's MRP 2019.



This repository provides the official PyTorch implementation of our paper "ÚFAL at MRP 2020: Permutation-invariant Semantic Parsing in PERIN" together with pretrained base models for all five frameworks from MRP 2020: AMR, DRG, EDS, PTG and UCCA.



How to run

🐾   Clone repository and install the Python requirements

git clone https://github.com/ufal/perin.git
cd perin

pip3 install -r requirements.txt 
pip3 install git+https://github.com/cfmrp/mtool.git#egg=mtool

🐾   Download and pre-process the dataset

Download the treebanks into ${data_dir} and split the cross-lingual datasets into training and validation parts by running:

./scripts/split_dataset.sh "path_to_a_dataset.mrp"

Preprocess and cache the dataset (computing the relative encodings can take up to several hours):

python3 preprocess.py --config config/base_amr.yaml --data_directory ${data_dir}

You should also download CzEngVallex if you are going to parse PTG:

curl -O https://lindat.mff.cuni.cz/repository/xmlui/bitstream/handle/11234/1-1512/czengvallex.zip
unzip czengvallex.zip
rm frames_pairs.xml czengvallex.zip

🐾   Train

To train a shared model for the English and Chinese AMR, run the following script. Other configurations are located in the config folder.

python3 train.py --config config/base_amr.yaml --data_directory ${data_dir} --save_checkpoints --log_wandb

Note that the companion file in needed only to provide the lemmatized forms, so it's also possible to train without it (but that will most likely negatively influence the accuracy of label prediction) -- just set the companion paths to None.

🐾   Inference

You can run the inference on the validation and test datasets by running:

python3 inference.py --checkpoint "path_to_pretrained_model.h5" --data_directory ${data_dir}

Citation

@inproceedings{Sam:Str:20,
  author = {Samuel, David and Straka, Milan},
  title = {{{\'U}FAL} at {MRP}~2020:
           {P}ermutation-Invariant Semantic Parsing in {PERIN}},
  booktitle = CONLL:20:U,
  address = L:CONLL:20,
  pages = {\pages{--}{53}{64}},
  year = 2020
}
Owner
ÚFAL
Institute of Formal and Applied Linguistics (ÚFAL), Faculty of Mathematics and Physics, Charles University
ÚFAL
WaveFake: A Data Set to Facilitate Audio DeepFake Detection

WaveFake: A Data Set to Facilitate Audio DeepFake Detection This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper

Chair for Sys­tems Se­cu­ri­ty 27 Dec 22, 2022
Image Segmentation and Object Detection in Pytorch

Image Segmentation and Object Detection in Pytorch Pytorch-Segmentation-Detection is a library for image segmentation and object detection with report

Daniil Pakhomov 732 Dec 10, 2022
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
Neural-fractal - Create Fractals Using Complex-Valued Neural Networks!

Neural Fractal Create Fractals Using Complex-Valued Neural Networks! Home Page Features Define Dynamical Systems Using Complex-Valued Neural Networks

Amirabbas Asadi 10 Dec 17, 2022
Kaggle Feedback Prize - Evaluating Student Writing 15th solution

Kaggle Feedback Prize - Evaluating Student Writing 15th solution First of all, I would like to thank the excellent notebooks and discussions from http

Lingyuan Zhang 6 Mar 24, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Local Multi-Head Channel Self-Attention for FER2013

LHC-Net Local Multi-Head Channel Self-Attention This repository is intended to provide a quick implementation of the LHC-Net and to replicate the resu

12 Jan 04, 2023
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
Real-Time Semantic Segmentation in Mobile device

Real-Time Semantic Segmentation in Mobile device This project is an example project of semantic segmentation for mobile real-time app. The architectur

708 Jan 01, 2023
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
A Traffic Sign Recognition Project which can help the driver recognise the signs via text as well as audio. Can be used at Night also.

Traffic-Sign-Recognition In this report, we propose a Convolutional Neural Network(CNN) for traffic sign classification that achieves outstanding perf

Mini Project 64 Nov 19, 2022
Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

MOSES 656 Dec 29, 2022