atmaCup #11 の Public 4th / Pricvate 5th Solution のリポジトリです。

Overview

#11 atmaCup

目次

解法概要

詳細は discussion で公開しています [link]

3行まとめ:

  • SimSiam による事前学習
  • Classication / Regression それぞれのタスクで Fine-tuning
  • 後処理を行った上で Weight Optimization

ディレクトリ構成

.
├── input
│     └── atmaCup-11       # コンペデータを置く場所
├── output                 # 学習結果の出力先
└── src                    # preprocess, training, inference 等の code

./src 下の構成についてはその他補足に記載。

実行手順

以下ではスクリプトの実行を ./src ディレクトリで行ってください。

環境

GPU

  • TitanRTX(主にSimSiam と重い model の学習に使用)
  • GTX1080Ti(主に軽い model の学習と推論に使用)

batch size を落とす・Gradient Accumulation を使用する 等を行えば VRAM 容量が小さめの GPU でも動かせると思います。

Python & cuda

  • Python 3.8.6
  • CUDA 10.2 (CUDA driver 440.33.01)

主要なライブラリ

  • 抜け漏れがあるかもしれないです
  • 古すぎるとかでなければ Version が一致しなくても動くと思います
Name Version
albumentations 1.0.0
joblib 1.0.1
lightly 1.1.16
matplotlib 3.4.2
numpy 1.20.3
opencv-python 4.5.2.54
optuna 2.8.0
pandas 1.2.4
pytorch-pfn-extras 0.4.1
PyYAML 5.4.1
scikit-learn 0.24.2
scipy 1.6.3
timm 0.4.12
torch 1.9.0
torchvision 0.10.0
tqdm 4.61.0

準備

コンペティションデータの格納

コンペティションのページからダウンロードして ./input/atmaCup-11 に解凍、photos.zip もその場で解凍してください。
以下のような構成になることを想定しています。

.
├── input
│     └── atmaCup-11
│             ├── photos
│             ├── atmaCup#11_sample_submission.csv
│             ├── materials.csv
│             ├── techniques.csv
│             ├── test.csv
│             └── train.csv
.
.

前処理

以下を実行。

$ python preprocess.py

各画像のサイズ等が格納された img_info.csv 、データセット全体の(概算の)channel ごとの統計値が計算された stats_by_data.csvtrain.csv に Cross Validation のための分割(fold 列)が追加された train_sgkf-5fold.csv./input/atmaCup-11 下に生成されます。

学習

事前学習

まず ResNet18-D, ResNet34-D, ResNet50-D, Fast-ResNeSt50-D_1s4x24d の 4モデルについて SimSiam による事前学習を行います。 GPU に乗らない場合は gradient accumulation の使用を検討してください。

$ python train_simsiam.py -cfg exp_config/000.yml  # resnet18d
$ python train_simsiam.py -cfg exp_config/001.yml  # resnet34d
$ python train_simsiam.py -cfg exp_config/002.yml  # resnet50d
$ python train_simsiam.py -cfg exp_config/003.yml  # resnest50d_1s4x24d

Fine-tuning

自動で 5fold の training を実行。Regression / Classification の各タスクで行うので計8種のモデルが出来ます。 前述の SimSiam の学習結果が以下のように ./output下に出力されており、これらを読み込んで使います。

config file 内で ResNet18-D, ResNet34-D は 150 epoch, ResNet50-D, Fast-ResNeSt50-D_1s4x24d は 200 epoch 時点の事前学習モデルを使用するようにしてあります。(ただ gradient accumulation を使用すると少し挙動が変わるようなので、SimSiam での loss と std を確認して必要に応じて変更して下さい。)

.
├── output
│     ├── 000_resnet18d_simsiam
│     ├── 001_resnet34d_simsiam
│     ├── 002_resnet50d_simsiam
│     └── 003_resnest50d_1s4x24d_simsiam
.
.
Classification
$ python train.py -cfg exp_config/100.yml  # resnet18d
$ python train.py -cfg exp_config/101.yml  # resnet34d
$ python train.py -cfg exp_config/102.yml  # resnet50d
$ python train.py -cfg exp_config/103.yml  # resnest50d_1s4x24d
Regression
$ python train.py -cfg exp_config/200.yml  # resnet18d
$ python train.py -cfg exp_config/201.yml  # resnet34d
$ python train.py -cfg exp_config/202.yml  # resnet50d
$ python train.py -cfg exp_config/203.yml  # resnest50d_1s4x24d

推論

学習が完了していると ./output 下に各学習結果のディレクトリが生成されているはずです。これらを読み込んで使用します。

.
├── output
│     ├── 100_resnet18d_cls
│     ├── 101_resnet34d_cls
│     ├── 102_resnet50d_cls
│     ├── 103_resnest50d_1s4x24d_cls
│     ├── 200_resnet18d_reg
│     ├── 201_resnet34d_reg
│     ├── 202_resnet50d_reg
│     └── 203_resnest50d_1s4x24d_reg
.
.

モデルごと

各学習結果のディレクトリを指定する形で実行します。

!!注意!!:同じディレクトリ内に metric(今回は RMSE) での各 fold での best model が copy され、学習過程のチェックポイントは全て削除されます。

同じディレクトリ内に各 fold での best model での予測結果、5-fold averaging 、oof prediction ( + classification の場合は logit の状態のもの)、各 fold での CV の結果の csv が出力されます。logit 以外は後処理を実施した上での予測結果です。

Classification
$ python infer.py -e ../output/100_resnet18d_cls
$ python infer.py -e ../output/101_resnet34d_cls
$ python infer.py -e ../output/102_resnet50d_cls
$ python infer.py -e ../output/103_resnet50d_1s4x24d_cls
Regression
$ python infer.py -e ../output/200_resnet18d_reg
$ python infer.py -e ../output/201_resnet34d_reg
$ python infer.py -e ../output/202_resnet50d_reg
$ python infer.py -e ../output/203_resnet50d_1s4x24d_reg

アンサンブル

以下を実行してください。

$ python ensemble.py -cfg exp_config/900.yml

Classification/Regression モデルのみでの averaging 、全モデル(8 model)での averaging 、oputuna で weight optimization を行った結果、が出力されます。

その他補足

./src の構成について

少し補足しておくと、./src 下のディレクトリ・ファイルの中身はざっとこんな感じです。

.
├── src
│     ├── base_data         # コンペ問わず使いまわす dataset 等
│     ├── base_model        # コンペ問わず使いまわす model 等
│     ├── base_optimizer    # コンペ問わず使いまわす optimizer 等
│     ├── base_pfn_extras   # コンペ問わず使いまわす pfn-extras 関連
│     ├── utils             # その他の使いまわすコード
│     ├── data.py           # コンペ特有の dataset 等を作ったら書く
│     ├── model.py          # コンペ特有の model 等を作ったら書く
│     ├── global_config.py  # (コンペ特有の)全体的な設定などを記述
│     ├── preprocess.py     # コンペ特有の前処理
│     ├── train_simsiam.py  # SimSiam の学習
│     ├── train.py          # Fine-tuning の学習
│     ├── infer.py          # 推論
│     └── ensemble.py       # アンサンブル
.
.

base_XXXutils は固定で、コンペで都度都度必要になったものは model.pydata.py 等に新しく追加します。コンペ終了後「また使いそうだな」というものは base_XXX に統合する運用です(例えば今回なら SimSiam のために書いた Dataset を終了後に統合しました)。 一応再現性を保つという名目で model.pydata.pyglobal_config.pytrain[_simsiam].py は学習ごとに結果の出力先へコピーを取るようにしています。

train.py は基本使いまわしでコンペごとに一部(主にデータの読み込みの部分)を書き換えて使いますが、infer.py(, ensemble.py)は、指標等のせいで書き換える部分が多くなる場合がほとんどです(今回なら後処理の部分など)。

またこれは pytorch-pfn-extras のしかも Config System を使っている人にしか伝わらない話ですが、config_types の辞書は一旦各 base_XXX__init__.py に作って置き、それらを global_config.py 内で読み込んで一つの辞書(CONFIG_TYPES)に統合しています。data.pymodel.py で新しく作ったものについても global_config.py 内で追加します。

結果の再現性について

乱数等は固定するとともに torch.backends.cudnn.deterministic を True にしていますが、基本的に速度を優先して torch.backends.cudnn.benchmark を True にしているので実行ごとに結果が変わります(詳細:Reproducibility — PyTorch 1.9.0 documentation)。

完全に再現性を取りたい場合は torch.backends.cudnn.benchmark を False にすれば(多分)行けるはずです。

出力等について

  • このリポジトリは terminal での実行を前提としていますが、notebook に移植する場合は pfn-extras が出してくれるプログレスバーの表示がうまくいきません。もし移植するのであれば各 config yaml ファイルにある ProgressBar をコメントアウトし、train.py の 139行目にある Evaluator の引数 progress_bar を False にしてください。

  • 学習の出力結果を一切上げていないので何が出てくるか補足しておくと、学習ログの json ファイル、指定したタイミングでの model の snapshot、loss・metric・lr を可視化した png ファイルです。ここらへんの設定は config yaml ファイル の extensions で指定しています。

pytorch-pfn-extras使いでない方へ

特に Config System を使用しているせいで面食らう部分もあるかと思いますが、train[_simsiam].py を読んでいただけると流れ自体は basic な training loop とほぼ同じだとわかると思います(mixup とか gradient accumulation を入れたことでちょっとごちゃついてますが)。 manager と extensions の枠組みを使うことで素の training loop にあまり影響せずに前述の出力が出来るのが pytorch-pfn-extras の一番好きな所なので、興味がある方は是非使ってみてください!

Owner
Tawara
Research & Development Engineer, Kaggle 4x Master.
Tawara
[ICCV-2021] An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation

An Empirical Study of the Collapsing Problem in Semi-Supervised 2D Human Pose Estimation (ICCV 2021) Introduction This is an official pytorch implemen

rongchangxie 42 Jan 04, 2023
classify fashion-mnist dataset with pytorch

Fashion-Mnist Classifier with PyTorch Inference 1- clone this repository: git clone https://github.com/Jhamed7/Fashion-Mnist-Classifier.git 2- Instal

1 Jan 14, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Official pytorch implementation of "Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization" ACMMM 2021 (Oral)

Feature Stylization and Domain-aware Contrastive Loss for Domain Generalization This is an official implementation of "Feature Stylization and Domain-

22 Sep 22, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Using the provided dataset which includes various book features, in order to predict the price of books, using various proposed methods and models.

Nikolas Petrou 1 Jan 13, 2022
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
An implementation of IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification

IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG Classification The repostiory consists of the code, results and data set links for

12 Dec 26, 2022
Meshed-Memory Transformer for Image Captioning. CVPR 2020

M²: Meshed-Memory Transformer This repository contains the reference code for the paper Meshed-Memory Transformer for Image Captioning (CVPR 2020). Pl

AImageLab 422 Dec 28, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
Official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive

TTT++ This is an official implementation for TTT++: When Does Self-supervised Test-time Training Fail or Thrive? TL;DR: Online Feature Alignment + Str

VITA lab at EPFL 39 Dec 25, 2022
Optimizes image files by converting them to webp while also updating all references.

About Optimizes images by (re-)saving them as webp. For every file it replaced it automatically updates all references. Works on single files as well

Watermelon Wolverine 18 Dec 23, 2022