Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Overview

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization

This is the official PyTorch implementation for the HAM method.

Paper | Model | Data

Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis
by Xi Ouyang, Srikrishna Karanam, Ziyan Wu, Terrence Chen, Jiayu Huo, Xiang Sean Zhou, Qian Wang, Jie-Zhi Cheng

Teaser image

Abstract

We propose a new attention-driven weakly supervised algorithm comprising a hierarchical attention mining framework that unifies activation- and gradient-based visual attention in a holistic manner. On two largescale chest X-ray datasets (NIH Chest X-ray14 and CheXpert), it can achieve significant localization performance improvements over the current state of the art while also achieve competitive classification performance.

Release Notes

This repository is a faithful reimplementation of HAM in PyTorch, including all the training and evaluation codes on NIH Chest X-ray14 dataset. We also provide two trained models for this dataset. For CheXpert dataset, you can refer to the data preparation on NIH Chest X-ray14 dataset to implement the code.

Since images in CheXpert are annotated with labels only at image level, we invite a senior radiologist with 10+ years of experience to label the bounding boxes for 9 abnormalities. These annotations are also opensourced here, including 6099 bounding boxes for 2345 images. We hope that it can help the future researchers to better verify their methods.

Installation

Clone this repo.

git clone https://github.com/oyxhust/HAM.git
cd HAM/

We provide the CRF method in this code, which can help to refine the box annotations to close to the mask. It is not activated by default, but pydensecrf should be installed.

pip install cython
pip install git+https://github.com/lucasb-eyer/pydensecrf.git

This code requires PyTorch 1.1+ and python 3+. Please install Pytorch 1.1+ environment, and install dependencies (e.g., torchvision, visdom and PIL) by

pip install -r requirements.txt

Dataset Preparation

For NIH Chest X-ray14 or CheXpert, the datasets must be downloaded beforehand. Please download them on the respective webpages. In the case of NIH Chest X-ray14, we put a few sample images in this code repo.

Preparing NIH Chest X-ray14 Dataset. The dataset can be downloaded here (also could be downloaded from Kaggle Challenge). In particular, you will need to download “images_001.tar.gz", “images_002.tar.gz", ..., and "images_012.tar.gz". All these files will be decompressed into a images folder. The images and labels should be arranged in the same directory structure as datasets/NIHChestXray14/. The folder structure should be as follows:

├── datasets
│   ├── NIHChestXray14
│   │    ├── images
│   │    │    ├── 00000001_000.png
│   │    │    ├── 00000001_001.png
│   │    │    ├── 00000001_002.png
│   │    │    ├── ...
│   │    ├── Annotations
│   │    │    ├── BBoxes.json
│   │    │    └── Tags.json
│   │    ├── ImageSets
│   │    │    ├── bbox
│   │    │    └── Main

BBoxes.json is a dictionary to store the bounding boxes for abnormality localization in this dataset. Tags.json is a dictionary of the image-level labels for all the images. These json files are generated from the original dataset files for better input to our models. ImageSets contains data split files of the training, validation and testing in different settings.

Preparing CheXpert Dataset. The dataset can be downloaded here. You can follow the similar folder structure of NIH Chest X-ray14 dataset to prepare this dataset. Since images in CheXpert are annotated with labels only at image level, we invite a senior radiologist with 10+ years of experience to label the bounding boxes for 9 abnormalities. We release these localization annotations in datasets/CheXpert/Annotations/BBoxes.json. It is a dictionary with the relative image path under CheXpert/images fold as the key, and store the corresponding abnormality box annotations. For each bounding box, the coordinate format is [xmin, ymin, xmax, ymax]. We have labeled 6099 bounding boxes for 2345 images. It is worth noting that the number of our box annotations is significantly larger than the number of annotated boxes in the NIH dataset. Hope to better help future researchers.

Training

Visdom

We use visdom to plot the loss values and the training attention results. Therefore, it is neccesary to open a visdom port during training. Open a terminal in any folder and input:

python -m visdom.server

Click the URL http://localhost:8097 to see the visualization results. Here, it uses the default port 8097.

Also, you can choose to use other ports by

python -m visdom.server -p 10004

10004 is an example, which can be set into any other available port of your machine. The port number "display_port" in the corresponding config file should be also set into the same value, and click the URL http://localhost:10004 to see the visualization results.

Classification Experiments

Train a model on the official split of NIH Chest-Xray14 dataset:

python train.py -cfg configs/NIHChestXray14/classification/official_split.yaml

The training log and visualization results will be stored on output/logs and output/train respectively. Our trained models on offical splits is avaliable on Baidu Yun (code: rhsd) or Google Drive.

Train the models on 5-fold cross-validation (CV) scheme of NIH Chest-Xray14 dataset. In each fold, we use 70% of the annotated and 70% of unannotated images for training, and 10% of the annotated and unannotated images for validation. Then, the rest 20% of the annotated and unannotated images are used for testing. Train on fold1:

python train.py -cfg configs/NIHChestXray14/classification/5fold_validation/fold1.yaml

Config files of other folds can be also found on configs/NIHChestXray14/classification/5fold_validation.

Localization Experiments

Train our model with 100% images (111,240) without any box annotations and test with the 880 images with box annotations on NIH Chest-Xray14 dataset:

python train.py -cfg configs/NIHChestXray14/localization/without_bboxes.yaml

Train the models on 5-fold cross-validation (CV) scheme of NIH Chest-Xray14 dataset. In each fold, we train our model with 50% of the unannotated images and 80% of the annotated images, and tested with the remaining 20% of the annotated images. Train on fold1:

python train.py -cfg configs/NIHChestXray14/localization/5fold_validation/fold1.yaml

Trained models on fold1 is avaliable on Baidu Yun (code: c7np) or Google Drive. Config files of other folds can be also found on configs/NIHChestXray14/localization/5fold_validation.

Testing

Here, we take the test results for the official splits of NIH Chest-Xray14 dataset as an example. It requires the corresponding config file and the trained weights. Please download the trained model on Baidu Yun (code: rhsd) or Google Drive.

Once get the trained model, the test results (classification and localization metrics) can be calculated by:

python test.py -cfg configs/official_split.yaml -w [PATH/TO/OfficialSplit_Model.pt]

Also, the attention maps from our method can be generated by:

python visual.py -cfg configs/official_split.yaml -w [PATH/TO/OfficialSplit_Model.pt]

The attention results will be saved in outputs/visual. You can open the index.html to check all the results in a webpage.

Also, you can download the model trained with box annotations on Baidu Yun (code: c7np) or Google Drive. This model can achieve much better localization results than the model trained on official split.

Code Structure

  • train.py, test.py, visual.py: the entry point for training, testing, and visualization.
  • configs/: config files for training and testing.
  • data/: the data loader.
  • models/: creates the networks.
  • modules/attentions/: the proposed foreground attention module.
  • modules/sync_batchnorm/: the synchronized batchNorm.
  • utils/: define the training, testing and visualization process and the support modules.

Options

Options in config files. "GPUs" can select the gpus. "Means" and "Stds" are used for the normalization. "arch" only supports the resnet structure, you can choose one from ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101','resnet152', 'resnext50_32x4d', 'resnext101_32x8d']. "Downsampling" defines the downsampline rate of the feature map from the backbone, including [8, 16, 32]. "Using_pooling" decides whether to use the first pooling layer in resnet. "Using_dilation" decides whether to use the dilation convolution in resnet. "Using_pretrained_weights" decides whether to use the pretrained weights on ImageNet. "Using_CRF" decides whether to use the CRF to prepocess the input box annotations. It can help to refine the box to more close to the mask annotations. "img_size" and "in_channels" is the size and channel of the input image. "display_port" is the visdom port.

Options in utils/config.py. "model_savepath" is the path to save checkpoint. "outputs_path" is the path to save output results. "cam_w" and "cam_sigma" are the hyperparameters in the soft masking fuction in "refine_cams" function in models/AttentionModel/resnet.py. "cam_loss_sigma" is the hyperparameter for the soft masking in the abnormality attention map. "lse_r" is the hyperparameter for LSE pooling. "loss_ano", "loss_cls", "loss_ex_cls", "loss_bound", and "loss_union" are the weights for the weighting factors for different losses. "cls_thresh" is the threshold for classification prediction to calculate the accuracy. "cam_thresh" is the threshold for localization prediction to get the binary mask. "thresh_TIOU" and "thresh_TIOR" are the thresholds to calculate the TIoU and TIoR. "palette" defines the color for mask visualization.

Citation

If you use this code or our published annotations of CheXpert dataset for your research, please cite our paper.

@article{ouyang2021learning,
  title={Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis},
  author={Ouyang, Xi and Karanam, Srikrishna and Wu, Ziyan and Chen, Terrence and Huo, Jiayu and Zhou, Xiang Sean and Wang, Qian and Cheng, Jie-Zhi},
  journal={IEEE Transactions on Medical Imaging},
  volume={40},
  number={10},
  pages={2698--2710},
  year={2021},
  publisher={IEEE}
}

Acknowledgments

We thank Jiayuan Mao for his Synchronized Batch Normalization code, and Jun-Yan Zhu for his HTML visualization code.

Owner
Xi Ouyang
Xi Ouyang
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
The official implementation of paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks" (IJCV under review).

DGMS This is the code of the paper "Finding the Task-Optimal Low-Bit Sub-Distribution in Deep Neural Networks". Installation Our code works with Pytho

Runpei Dong 3 Aug 28, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Detectron2-FC a fast construction platform of neural network algorithm based on detectron2

What is Detectron2-FC Detectron2-FC a fast construction platform of neural network algorithm based on detectron2. We have been working hard in two dir

董晋宗 9 Jun 06, 2022
Simple and Robust Loss Design for Multi-Label Learning with Missing Labels

Simple and Robust Loss Design for Multi-Label Learning with Missing Labels Official PyTorch Implementation of the paper Simple and Robust Loss Design

Xinyu Huang 28 Oct 27, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
The Multi-Mission Maximum Likelihood framework (3ML)

PyPi Conda The Multi-Mission Maximum Likelihood framework (3ML) A framework for multi-wavelength/multi-messenger analysis for astronomy/astrophysics.

The Multi-Mission Maximum Likelihood (3ML) 62 Dec 30, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

Introduction QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and

Yu 1.4k Dec 30, 2022
CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator

CARMS: Categorical-Antithetic-REINFORCE Multi-Sample Gradient Estimator This is the official code repository for NeurIPS 2021 paper: CARMS: Categorica

Alek Dimitriev 1 Jul 09, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
Y. Zhang, Q. Yao, W. Dai, L. Chen. AutoSF: Searching Scoring Functions for Knowledge Graph Embedding. IEEE International Conference on Data Engineering (ICDE). 2020

AutoSF The code for our paper "AutoSF: Searching Scoring Functions for Knowledge Graph Embedding" and this paper has been accepted by ICDE2020. News:

AutoML Research 64 Dec 17, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit

streamlit-manim Seeing if I can put together an interactive version of 3b1b's Manim in Streamlit Installation I had to install pango with sudo apt-get

Adrien Treuille 6 Aug 03, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
《Unsupervised 3D Human Pose Representation with Viewpoint and Pose Disentanglement》(ECCV 2020) GitHub: [fig9]

Unsupervised 3D Human Pose Representation [Paper] The implementation of our paper Unsupervised 3D Human Pose Representation with Viewpoint and Pose Di

42 Nov 24, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL), NeurIPS-2021

Directed Graph Contrastive Learning The PyTorch implementation of Directed Graph Contrastive Learning (DiGCL). In this paper, we present the first con

Tong Zekun 28 Jan 08, 2023