Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

Overview

One Thing One Click

One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021)

Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

This code is based on PointGroup https://github.com/llijiang/PointGroup

Authors: Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu

Installation

Requirements

  • Python 3.7.0
  • Pytorch 1.3.0
  • CUDA 10.1

Virtual Environment

conda create -n pointgroup python==3.7
source activate pointgroup

Install PointGroup

(1) Clone the PointGroup repository.

git clone https://github.com/liuzhengzhe/One-Thing-One-Click --recursive 
cd One-Thing-One-Click

(2) Install the dependent libraries.

pip install -r requirements.txt
conda install -c bioconda google-sparsehash 

(3) For the SparseConv, we apply the implementation of spconv. The repository is recursively downloaded at step (1). We use the version 1.0 of spconv.

Note: The author of PointGroup further modified spconv\spconv\functional.py to make grad_output contiguous. Make sure you use our modified spconv.

  • To compile spconv, firstly install the dependent libraries.
conda install libboost
conda install -c daleydeng gcc-5 # need gcc-5.4 for sparseconv

Add the $INCLUDE_PATH$ that contains boost in lib/spconv/CMakeLists.txt. (Not necessary if it could be found.)

include_directories($INCLUDE_PATH$)
  • Compile the spconv library.
cd lib/spconv
python setup.py bdist_wheel
  • Run cd dist and use pip to install the generated .whl file.

(4) Compile the pointgroup_ops library.

cd lib/pointgroup_ops
python setup.py develop

If any header files could not be found, run the following commands.

python setup.py build_ext --include-dirs=$INCLUDE_PATH$
python setup.py develop

$INCLUDE_PATH$ is the path to the folder containing the header files that could not be found.

Data Preparation

  • Download the ScanNet v2 dataset.

  • Put the data in the corresponding folders.

  • Put the file scannetv2-labels.combined.tsv in the data/ folder.

  • Change the path in prepare_data_otoc.py Line 20.

cd data/
python prepare_data_otoc.py 
  • Split the generated files into the data/train_weakly and data/val_weakly folders according to the ScanNet v2 train/val split.

Pretrained Model

We provide a pretrained model trained on ScanNet v2 dataset. Download it here. Its performance on ScanNet v2 validation set is 71.94 mIoU.

Inference and Evaluation

(1) 3D U-Net Evaluation

set the data_root in config/pointgroup_run1_scannet.yaml

cd 3D-U-Net
python test.py --config config/pointgroup_run1_scannet.yaml --pretrain pointgroup_run1_scannet-000001250.pth

Its performance on ScanNet v2 validation set is 68.96 mIoU.

(2) Relation Net Evaluation

cd relation
python test.py --config config/pointgroup_run1_scannet.yaml --pretrain pointgroup_run1_scannet-000002891_weight.pth

(3) Overall Evaluation

cd merge
python test.py --config config/pointgroup_run1_scannet.yaml

Self Training

(1) Train 3D U-Net

set the data_root/dataset in config/pointgroup_run1_scannet.yaml

cd 3D-U-Net
CUDA_VISIBLE_DEVICES=0 python train.py --config config/pointgroup_run1_scannet.yaml 

(2) Generate features and predictions of 3D U-Net

CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml --pretrain $PATH_TO_THE_MODEL$.pth

(3) Train Relation Net

set the data_root/dataset in config/pointgroup_run1_scannet.yaml

cd relation
CUDA_VISIBLE_DEVICES=0 python train.py --config config/pointgroup_run1_scannet.yaml 

(4) Generate features and predictions of Relation Net

CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml --pretrain $PATH_TO_THE_MODEL$_weight.pth

(5) Merge the Results via Graph Propagation

cd merge
CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml

(6) Repeat from (1) to (5) for self-training for 3 to 5 times

Acknowledgement

This repo is built upon several repos, e.g., PointGrouop, SparseConvNet, spconv and ScanNet.

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).

Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval

More Photos are All You Need: Semi-Supervised Learning for Fine-Grained Sketch Based Image Retrieval, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdh

Ayan Kumar Bhunia 22 Aug 27, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
public repo for ESTER dataset and modeling (EMNLP'21)

Project / Paper Introduction This is the project repo for our EMNLP'21 paper: https://arxiv.org/abs/2104.08350 Here, we provide brief descriptions of

PlusLab 19 Oct 27, 2022
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal Convolutions for Action Recognition"

R2Plus1D-PyTorch PyTorch implementation of the R2Plus1D convolution based ResNet architecture described in the paper "A Closer Look at Spatiotemporal

Irhum Shafkat 342 Dec 16, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Auto HMM: Automatic Discrete and Continous HMM including Model selection

Auto HMM: Automatic Discrete and Continous HMM including Model selection

Chess_champion 29 Dec 07, 2022
Data cleaning, missing value handle, EDA use in this project

Lending Club Case Study Project Brief Solving this assignment will give you an idea about how real business problems are solved using EDA. In this cas

Dhruvil Sheth 1 Jan 05, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Efficient 3D human pose estimation in video using 2D keypoint trajectories

3D human pose estimation in video with temporal convolutions and semi-supervised training This is the implementation of the approach described in the

Meta Research 3.1k Dec 29, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022