A little Python application to auto tag your photos with the power of machine learning.

Overview

GitHub license PRs Welcome GitHub contributors GitHub issues

Tag Machine

A little Python application to auto tag your photos with the power of machine learning.
Report a bug or request a feature

Table of Contents

Getting Started

Prerequisites and dependencies

This repository is tested on Python 3.7+ and PyTorch LTS 1.8.2.

You should install Tag Machine in a virtual environment. If you're unfamiliar with Python virtual environments, check out the user guide. First, create a virtual environment with the version of Python you're going to use and activate it.

Then, you will need to install PyTorch. Please refer to PyTorch installation page regarding the specific install command for your platform.

When PyTorch is installed, 🤗 Transformers can be installed using pip as follows:

pip install transformers

You can refer to the repository of 🤗 Transformers for more information.

Then you will need to install PySide6, a port of QT for Python used for the graphic interface. It can be installed using pip as follows:

pip install pyside6

Finally you will need to install IPTCInfo3 to allow Tag Machine to write tags in your images. It can be installed using pip as follows:

pip install iptcinfo3

Installation

Follow the instructions above then clone the repo (git clone https:://github.com/torresflo/Tag-Machine.git). You can now run main.py.

Usage

Press the button Load files... to load your images then press the button Classify images to start the classifier. Depending on your machine hardware and the number of images this can take some (and eventually a lot of) time.

The results are loaded in a table below so you can see which tags are detected for each image.

If you are satisfied with the results, you can then press the button Write tags in images to write the found tags in the metadata of the image (IPTC, IIM Application 2, Keywords). Each tag is appended to the existing ones and will not be written if it already exists.

Example image

Examples

Here are some examples with results. You can find these images in the folder Photos. All images come from the Wikimedia Commons website.

Note that the detection uses the labels computed by the PhotoPrism project. It allows to regroup similar tags in more generic categories and discard non useful ones. Also, a threshold is also calculated to avoid wrong tagging.

Image Tags found Probability
tower, architecture 97,98%
Nothing --,--%
dining 87,52%
alpine, landscape, mountain 66,37%
Nothing --,--%
shark, water, fish, animal 76,77%
Nothing --,--%
castle, historic, architecture 99,64%
castle, historic, architecture 98,44%

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature)
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the GNU General Public License v3.0. See LICENSE for more information.

Owner
Florian Torres
Game developper the day, gamer by night.
Florian Torres
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Fashion Entity Classification

Fashion-Entity-Classification - Fashion-MNIST is a dataset of Zalando's article images—consisting of a training set of 60,000 examples and a test set of 10,000 examples. Each example is a 28x28 grays

ADITYA SHAH 1 Jan 04, 2022
A unified framework to jointly model images, text, and human attention traces.

connect-caption-and-trace This repository contains the reference code for our paper Connecting What to Say With Where to Look by Modeling Human Attent

Meta Research 73 Oct 24, 2022
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Wileless-PDGNet Implementation

Wileless-PDGNet Implementation This repo is related to the following paper: Boning Li, Ananthram Swami, and Santiago Segarra, "Power allocation for wi

6 Oct 04, 2022
This repository contains the files for running the Patchify GUI.

Repository Name Train-Test-Validation-Dataset-Generation App Name Patchify Description This app is designed for crop images and creating smal

Salar Ghaffarian 9 Feb 15, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
[NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning

SoCo [NeurIPS 2021 Spotlight] Aligning Pretraining for Detection via Object-Level Contrastive Learning By Fangyun Wei*, Yue Gao*, Zhirong Wu, Han Hu,

Yue Gao 139 Dec 14, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks

Classification of Long Sequential Data using Circular Dilated Convolutional Neural Networks arXiv preprint: https://arxiv.org/abs/2201.02143. Architec

19 Nov 30, 2022
Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the Machine Learning 4 Health Workshop

Detection-aided liver lesion segmentation Here we present the implementation in TensorFlow of our work about liver lesion segmentation accepted in the

Image Processing Group - BarcelonaTECH - UPC 96 Oct 26, 2022