Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Related tags

Deep Learningkilonerf
Overview

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Check out the paper on arXiv: https://arxiv.org/abs/2103.13744

KiloNeRF interactive demo

This repo contains the code for KiloNeRF, together with instructions on how to download pretrained models and datasets. Additionally, we provide a viewer for interactive visualization of KiloNeRF scenes. We further improved the implementation and KiloNeRF now runs ~5 times faster than the numbers we report in the first arXiv version of the paper. As a consequence the Lego scene can now be rendered at around 50 FPS.

Prerequisites

  • OS: Ubuntu 20.04.2 LTS
  • GPU: >= NVIDIA GTX 1080 Ti with >= 460.73.01 driver
  • Python package manager conda

Setup

Open a terminal in the root directory of this repo and execute export KILONERF_HOME=$PWD

Install OpenGL and GLUT development files
sudo apt install libgl-dev freeglut3-dev

Install Python packages
conda env create -f $KILONERF_HOME/environment.yml

Activate kilonerf environment
source activate kilonerf

CUDA extension installation

You can either install our pre-compiled CUDA extension or compile the extension yourself. Only compiling it yourself will allow you to make changes to the CUDA code but is more tedious.

Option A: Install pre-compiled CUDA extension

Install pre-compiled CUDA extension
pip install $KILONERF_HOME/cuda/dist/kilonerf_cuda-0.0.0-cp38-cp38-linux_x86_64.whl

Option B: Build CUDA extension yourself

Install CUDA development kit and restart your bash:

wget https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
sudo sh cuda_11.1.1_455.32.00_linux.run
echo -e "\nexport PATH=\"/usr/local/cuda/bin:\$PATH\"" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=\"/usr/local/cuda/lib64:\$LD_LIBRARY_PATH\"" >> ~/.bashrc

Download magma from http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz then build and install to /usr/local/magma

sudo apt install gfortran libopenblas-dev
wget http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz
tar -zxvf magma-2.5.4.tar.gz
cd magma-2.5.4
cp make.inc-examples/make.inc.openblas make.inc
export GPU_TARGET="Maxwell Pascal Volta Turing Ampere"
export CUDADIR=/usr/local/cuda
export OPENBLASDIR="/usr"
make
sudo -E make install prefix=/usr/local/magma

For further information on installing magma see: http://icl.cs.utk.edu/projectsfiles/magma/doxygen/installing.html

Finally compile KiloNeRF's C++/CUDA code

cd $KILONERF_HOME/cuda
python setup.py develop

Download pretrained models

We provide pretrained KiloNeRF models for the following scenes: Synthetic_NeRF_Chair, Synthetic_NeRF_Lego, Synthetic_NeRF_Ship, Synthetic_NSVF_Palace, Synthetic_NSVF_Robot

cd $KILONERF_HOME
mkdir logs
cd logs
wget https://www.dropbox.com/s/eqvf3x23qbubr9p/kilonerf-pretrained.tar.gz?dl=1 --output-document=paper.tar.gz
tar -xf paper.tar.gz

Download NSVF datasets

Credit to NSVF authors for providing their datasets: https://github.com/facebookresearch/NSVF

cd $KILONERF_HOME/data/nsvf
wget https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NSVF.zip && unzip -n Synthetic_NSVF.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NeRF.zip && unzip -n Synthetic_NeRF.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/BlendedMVS.zip && unzip -n BlendedMVS.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/TanksAndTemple.zip && unzip -n TanksAndTemple.zip

Since we slightly adjusted the bounding boxes for some scenes, it is important that you use the provided unzip argument to avoid overwriting our bounding boxes.

Usage

To benchmark a trained model run:
bash benchmark.sh

You can launch the interactive viewer by running:
bash render_to_screen.sh

To train a model yourself run
bash train.sh

The default dataset is Synthetic_NeRF_Lego, you can adjust the dataset by setting the dataset variable in the respective script.

Owner
Christian Reiser
Christian Reiser
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
A curated list of long-tailed recognition resources.

Awesome Long-tailed Recognition A curated list of long-tailed recognition and related resources. Please feel free to pull requests or open an issue to

Zhiwei ZHANG 542 Jan 01, 2023
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Hierarchical Memory Matching Network for Video Object Segmentation (ICCV 2021)

Hierarchical Memory Matching Network for Video Object Segmentation Hongje Seong, Seoung Wug Oh, Joon-Young Lee, Seongwon Lee, Suhyeon Lee, Euntai Kim

Hongje Seong 72 Dec 14, 2022
All supplementary material used by me while TA-ing CS3244: Machine Learning

CS3244-Tutorial-Material All supplementary material used by me while TA-ing CS3244: Machine Learning at NUS School of Computing. What is this? I teach

Rishabh Anand 18 Sep 23, 2022
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
2021:"Bridging Global Context Interactions for High-Fidelity Image Completion"

TFill arXiv | Project This repository implements the training, testing and editing tools for "Bridging Global Context Interactions for High-Fidelity I

Chuanxia Zheng 111 Jan 08, 2023
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
An open framework for Federated Learning.

Welcome to Intel® Open Federated Learning Federated learning is a distributed machine learning approach that enables organizations to collaborate on m

Intel Corporation 397 Dec 27, 2022
PRTR: Pose Recognition with Cascade Transformers

PRTR: Pose Recognition with Cascade Transformers Introduction This repository is the official implementation for Pose Recognition with Cascade Transfo

mlpc-ucsd 133 Dec 30, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Light Field Networks Project Page | Paper | Data | Pretrained Models Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Dur

Vincent Sitzmann 130 Dec 29, 2022
CCP dataset from Clothing Co-Parsing by Joint Image Segmentation and Labeling

Clothing Co-Parsing (CCP) Dataset Clothing Co-Parsing (CCP) dataset is a new clothing database including elaborately annotated clothing items. 2, 098

Wei Yang 434 Dec 24, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
1st Solution For ICDAR 2021 Competition on Mathematical Formula Detection

This project releases our 1st place solution on ICDAR 2021 Competition on Mathematical Formula Detection. We implement our solution based on MMDetection, which is an open source object detection tool

yuxzho 94 Dec 25, 2022
Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022