Code for KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Related tags

Deep Learningkilonerf
Overview

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Check out the paper on arXiv: https://arxiv.org/abs/2103.13744

KiloNeRF interactive demo

This repo contains the code for KiloNeRF, together with instructions on how to download pretrained models and datasets. Additionally, we provide a viewer for interactive visualization of KiloNeRF scenes. We further improved the implementation and KiloNeRF now runs ~5 times faster than the numbers we report in the first arXiv version of the paper. As a consequence the Lego scene can now be rendered at around 50 FPS.

Prerequisites

  • OS: Ubuntu 20.04.2 LTS
  • GPU: >= NVIDIA GTX 1080 Ti with >= 460.73.01 driver
  • Python package manager conda

Setup

Open a terminal in the root directory of this repo and execute export KILONERF_HOME=$PWD

Install OpenGL and GLUT development files
sudo apt install libgl-dev freeglut3-dev

Install Python packages
conda env create -f $KILONERF_HOME/environment.yml

Activate kilonerf environment
source activate kilonerf

CUDA extension installation

You can either install our pre-compiled CUDA extension or compile the extension yourself. Only compiling it yourself will allow you to make changes to the CUDA code but is more tedious.

Option A: Install pre-compiled CUDA extension

Install pre-compiled CUDA extension
pip install $KILONERF_HOME/cuda/dist/kilonerf_cuda-0.0.0-cp38-cp38-linux_x86_64.whl

Option B: Build CUDA extension yourself

Install CUDA development kit and restart your bash:

wget https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
sudo sh cuda_11.1.1_455.32.00_linux.run
echo -e "\nexport PATH=\"/usr/local/cuda/bin:\$PATH\"" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=\"/usr/local/cuda/lib64:\$LD_LIBRARY_PATH\"" >> ~/.bashrc

Download magma from http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz then build and install to /usr/local/magma

sudo apt install gfortran libopenblas-dev
wget http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz
tar -zxvf magma-2.5.4.tar.gz
cd magma-2.5.4
cp make.inc-examples/make.inc.openblas make.inc
export GPU_TARGET="Maxwell Pascal Volta Turing Ampere"
export CUDADIR=/usr/local/cuda
export OPENBLASDIR="/usr"
make
sudo -E make install prefix=/usr/local/magma

For further information on installing magma see: http://icl.cs.utk.edu/projectsfiles/magma/doxygen/installing.html

Finally compile KiloNeRF's C++/CUDA code

cd $KILONERF_HOME/cuda
python setup.py develop

Download pretrained models

We provide pretrained KiloNeRF models for the following scenes: Synthetic_NeRF_Chair, Synthetic_NeRF_Lego, Synthetic_NeRF_Ship, Synthetic_NSVF_Palace, Synthetic_NSVF_Robot

cd $KILONERF_HOME
mkdir logs
cd logs
wget https://www.dropbox.com/s/eqvf3x23qbubr9p/kilonerf-pretrained.tar.gz?dl=1 --output-document=paper.tar.gz
tar -xf paper.tar.gz

Download NSVF datasets

Credit to NSVF authors for providing their datasets: https://github.com/facebookresearch/NSVF

cd $KILONERF_HOME/data/nsvf
wget https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NSVF.zip && unzip -n Synthetic_NSVF.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NeRF.zip && unzip -n Synthetic_NeRF.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/BlendedMVS.zip && unzip -n BlendedMVS.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/TanksAndTemple.zip && unzip -n TanksAndTemple.zip

Since we slightly adjusted the bounding boxes for some scenes, it is important that you use the provided unzip argument to avoid overwriting our bounding boxes.

Usage

To benchmark a trained model run:
bash benchmark.sh

You can launch the interactive viewer by running:
bash render_to_screen.sh

To train a model yourself run
bash train.sh

The default dataset is Synthetic_NeRF_Lego, you can adjust the dataset by setting the dataset variable in the respective script.

Owner
Christian Reiser
Christian Reiser
level1-image-classification-level1-recsys-09 created by GitHub Classroom

level1-image-classification-level1-recsys-09 ❗ 주제 설명 COVID-19 Pandemic 상황 속 마스크 착용 유무 판단 시스템 구축 마스크 착용 여부, 성별, 나이 총 세가지 기준에 따라 총 18개의 class로 구분하는 모델 ?

6 Mar 17, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
PyTorch implementation of neural style transfer algorithm

neural-style-pt This is a PyTorch implementation of the paper A Neural Algorithm of Artistic Style by Leon A. Gatys, Alexander S. Ecker, and Matthias

770 Jan 02, 2023
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
Keras implementation of Deeplab v3+ with pretrained weights

Keras implementation of Deeplabv3+ This repo is not longer maintained. I won't respond to issues but will merge PR DeepLab is a state-of-art deep lear

1.3k Dec 07, 2022
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023
Density-aware Single Image De-raining using a Multi-stream Dense Network (CVPR 2018)

DID-MDN Density-aware Single Image De-raining using a Multi-stream Dense Network He Zhang, Vishal M. Patel [Paper Link] (CVPR'18) We present a novel d

He Zhang 224 Dec 12, 2022
A PyTorch implementation of EfficientNet and EfficientNetV2 (coming soon!)

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Pytorch library for fast transformer implementations

Transformers are very successful models that achieve state of the art performance in many natural language tasks

Idiap Research Institute 1.3k Dec 30, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

Yijun Su 3 Oct 09, 2022
RTSeg: Real-time Semantic Segmentation Comparative Study

Real-time Semantic Segmentation Comparative Study The repository contains the official TensorFlow code used in our papers: RTSEG: REAL-TIME SEMANTIC S

Mennatullah Siam 592 Nov 18, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022