Cross-Task Consistency Learning Framework for Multi-Task Learning

Related tags

Deep Learningxtask_mt
Overview

Cross-Task Consistency Learning Framework for Multi-Task Learning

Tested on

  • numpy(v1.19.1)
  • opencv-python(v4.4.0.42)
  • torch(v1.7.0)
  • torchvision(v0.8.0)
  • tqdm(v4.48.2)
  • matplotlib(v3.3.1)
  • seaborn(v0.11.0)
  • pandas(v.1.1.2)

Data

Cityscapes (CS)

Download Cityscapes dataset and put it in a subdirectory named ./data/cityscapes. The folder should have the following subfolders:

  • RGB image in folder leftImg8bit
  • Segmentation in folder gtFine
  • Disparity maps in folder disparity

NYU

We use the preprocessed NYUv2 dataset provided by this repo. Download the dataset and put it in the dataset folder in ./data/nyu.

Model

The model consists of one encoder (ResNet) and two decoders, one for each task. The decoders outputs the predictions for each task ("direct predictions"), which are fed to the TaskTransferNet.
The objective of the TaskTranferNet is to predict the other task given a prediction image as an input (Segmentation prediction -> Depth prediction, vice versa), which I refer to as "transferred predictions"

Loss function

When computing the losses, the direct predictions are compared with the target while the transferred predictions are compared with the direct predictions so that they "align themselves".
The total loss consists of 4 different losses:

  • direct segmentation loss: CrossEntropyLoss()
  • direct depth loss: L1() or MSE() or logL1() or SmoothL1()
  • transferred segmentation loss:
    CrossEntropyLoss() or KLDivergence()
  • transferred depth loss: L1() or SSIM()

* Label smoothing: To "smooth" the one-hot probability by taking some of the probability from the correct class and distributing it among other classes.
* SSIM: Structural Similarity Loss

Flags

The flags are the same for both datasets. The flags and its usage are as written below,

Flag Name Usage Comments
input_path Path to dataset default is data/cityscapes (CS) or data/nyu (NYU)
height height of prediction default: 128 (CS) or 288 (NYU)
width width of prediction default: 256 (CS) or 384 (NYU)
epochs # of epochs default: 250 (CS) or 100 (NYU)
enc_layers which encoder to use default: 34, can choose from 18, 34, 50, 101, 152
use_pretrain toggle on to use pretrained encoder weights available for both datasets
batch_size batch size default: 8 (CS) or 6 (NYU)
scheduler_step_size step size for scheduler default: 80 (CS) or 60 (NYU), note that we use StepLR
scheduler_gamma decay rate of scheduler default: 0.5
alpha weight of adding transferred depth loss default: 0.01 (CS) or 0.0001 (NYU)
gamma weight of adding transferred segmentation loss default: 0.01 (CS) or 0.0001 (NYU)
label_smoothing amount of label smoothing default: 0.0
lp loss fn for direct depth loss default: L1, can choose from L1, MSE, logL1, smoothL1
tdep_loss loss fn for transferred depth loss default: L1, can choose from L1 or SSIM
tseg_loss loss fn for transferred segmentation loss default: cross, can choose from cross or kl
batch_norm toggle to enable batch normalization layer in TaskTransferNet slightly improves segmentation task
wider_ttnet toggle to double the # of channels in TaskTransferNet
uncertainty_weights toggle to use uncertainty weights (Kendall, et al. 2018) we used this for best results
gradnorm toggle to use GradNorm (Chen, et al. 2018)

Training

Cityscapes

For the Cityscapes dataset, there are two versions of segmentation task, which are 7-classes task and 19-classes task (Use flag 'num_classes' to switch tasks, default is 7).
So far, the results show near-SOTA for 7-class segmentation task + depth estimation.

ResNet34 was used as the encoder, L1() for direct depth loss and CrossEntropyLoss() for transferred segmentation loss.
The hyperparameter weights for both transferred predictions were 0.01.
I used Adam as my optimizer with an initial learning rate of 0.0001 and trained for 250 epochs with batch size 8. The learning rate was halved every 80 epochs.

To reproduce the code, use the following:

python main_cross_cs.py --uncertainty_weights

NYU

Our results show SOTA for NYU dataset.

ResNet34 was used as the encoder, L1() for direct depth loss and CrossEntropyLoss() for transferred segmentation loss.
The hyperparameter weights for both transferred predictions were 0.0001.
I used Adam as my optimizer with an initial learning rate of 0.0001 and trained for 100 epochs with batch size 6. The learning rate was halved every 60 epochs.

To reproduce the code, use the following:

python main_cross_nyu.py --uncertainty_weights

Comparisons

Evaluation metrics are the following:

Segmentation

  • Pixel accuracy (Pix Acc): percentage of pixels with the correct label
  • mIoU: mean Intersection over Union

Depth

  • Absolute Error (Abs)
  • Absolute Relative Error (Abs Rel): Absolute error divided by ground truth depth

The results are the following:

Cityscapes

Models mIoU Pix Acc Abs Abs Rel
MTAN 53.04 91.11 0.0144 33.63
KD4MTL 52.71 91.54 0.0139 27.33
PCGrad 53.59 91.45 0.0171 31.34
AdaMT-Net 62.53 94.16 0.0125 22.23
Ours 66.51 93.56 0.0122 19.40

NYU

Models mIoU Pix Acc Abs Abs Rel
MTAN* 21.07 55.70 0.6035 0.2472
MTAN† 20.10 53.73 0.6417 0.2758
KD4MTL* 20.75 57.90 0.5816 0.2445
KD4MTL† 22.44 57.32 0.6003 0.2601
PCGrad* 20.17 56.65 0.5904 0.2467
PCGrad† 21.29 54.07 0.6705 0.3000
AdaMT-Net* 21.86 60.35 0.5933 0.2456
AdaMT-Net† 20.61 58.91 0.6136 0.2547
Ours† 30.31 63.02 0.5954 0.2235

*: Trained on 3 tasks (segmentation, depth, and surface normal)
†: Trained on 2 tasks (segmentation and depth)
Italic: Reproduced by ourselves

Scores with models trained on 3 tasks for NYU dataset are shown only as reference.

Papers referred

MTAN: [paper][github]
KD4MTL: [paper][github]
PCGrad: [paper][github (tensorflow)][github (pytorch)]
AdaMT-Net: [paper]

Owner
Aki Nakano
Student at the University of Tokyo pursuing master's degree. Joined UC Berkeley Summer Session 2019. Researching deep learning. Python/R
Aki Nakano
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Code for Neural Reflectance Surfaces (NeRS) [arXiv] [Project Page] [Colab Demo] [Bibtex] This repo contains the code for NeRS: Neural Reflectance Surf

Jason Y. Zhang 234 Dec 30, 2022
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
PyTorch implementation of Memory-based semantic segmentation for off-road unstructured natural environments.

MemSeg: Memory-based semantic segmentation for off-road unstructured natural environments Introduction This repository is a PyTorch implementation of

11 Nov 28, 2022
Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features

Multi-modal Text Recognition Networks: Interactive Enhancements between Visual and Semantic Features | paper | Official PyTorch implementation for Mul

48 Dec 28, 2022
Using deep actor-critic model to learn best strategies in pair trading

Deep-Reinforcement-Learning-in-Stock-Trading Using deep actor-critic model to learn best strategies in pair trading Abstract Partially observed Markov

281 Dec 09, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Training data extraction on GPT-2

Training data extraction from GPT-2 This repository contains code for extracting training data from GPT-2, following the approach outlined in the foll

Florian Tramer 62 Dec 07, 2022
Self-supervised learning optimally robust representations for domain generalization.

OptDom: Learning Optimal Representations for Domain Generalization This repository contains the official implementation for Optimal Representations fo

Yangjun Ruan 18 Aug 25, 2022
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
First-Order Probabilistic Programming Language

FOPPL: A First-Order Probabilistic Programming Language This is an implementation of FOPPL, an S-expression based probabilistic programming language d

Renato Costa 23 Dec 20, 2022
Genetic Programming in Python, with a scikit-learn inspired API

Welcome to gplearn! gplearn implements Genetic Programming in Python, with a scikit-learn inspired and compatible API. While Genetic Programming (GP)

Trevor Stephens 1.3k Jan 03, 2023
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
All the essential resources and template code needed to understand and practice data structures and algorithms in python with few small projects to demonstrate their practical application.

Data Structures and Algorithms Python INDEX 1. Resources - Books Data Structures - Reema Thareja competitiveCoding Big-O Cheat Sheet DAA Syllabus Inte

Shushrut Kumar 129 Dec 15, 2022