Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

Overview

LassoBench

LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression.

Note: LassoBench is under active construction. Follow for more benchmarks soon.

Install and work with the development version

From a console or terminal clone the repository and install LassoBench:

::

git clone https://github.com/ksehic/LassoBench.git
cd LassoBench/
pip install -e .

Overview

The objective is to optimize the multi-dimensional hyperparameter that balances the least-squares estimation and the penalty term that promotes the sparsity.

The ambient space bounds are defined between [-1, 1].

LassoBench comes with two classes SyntheticBenchmark and RealBenchmark. While RealBenchmark is based on real-world applications found in medicine and finance, SyntheticBenchmark covers synthetic well-defined conditions. The user can select one of the predefined synthetic benchmarks or create a different bechmark.

Each benchmark comes with .evaluate that is used to evaluate the objective function, .test that provides the post-processing metrics (such as MSE on the test data and the F-score for synt benchs) and the argument mf_opt to define the multi-fidelity framework that is evaluated via .fidelity_evaluate.

The results are compared with the baselines LassoCV (.run_LASSOCV), AdaptiveLassoCV (to be implemented soon) and Sparse-HO (.run_sparseho).

Simple experiments are provided in example.py. In hesbo_example.py and alebo_example.py, we demostrate how to use LassoBench with some well-known HPO algorithms for high-dimensional problems.

Please refer to the reference for more details.

.
├── ...
├── example                    # Examples how to use LassoBench for HDBO algorithms
│   ├── alebo_example.py       # ALEBO applied on synt bench
│   ├── example.py             # Simple cases how to run with synt, real, and multifidelity benchs
│   ├── hesbo_example.py        # HesBO applied on synt and real bench
│   ├── hesbo_lib.pu            # HesBO library
│
└── ...

License

LassoBench is distributed under the MIT license. More information on the license can be found here

Simple synthetic bench code

import numpy as np
import LassoBench
synt_bench = LassoBench.SyntheticBenchmark(pick_bench='synt_simple')
d = synt_bench.n_features
random_config = np.random.uniform(low=-1.0, high=1.0, size=(d,))
loss = synt_bench.evaluate(random_config)

Real-world bench code

import numpy as np
import LassoBench
real_bench = LassoBench.RealBenchmark(pick_data='rcv1')
d = real_bench.n_features
random_config = np.random.uniform(low=-1.0, high=1.0, size=(d,))
loss = real_bench.evaluate(random_config)

Multi-information source bench code

import numpy as np
import LassoBench
real_bench_mf = LassoBench.RealBenchmark(pick_data='rcv1', mf_opt='discrete_fidelity')
d = real_bench_mf.n_features
random_config = np.random.uniform(low=-1.0, high=1.0, size=(d,))
fidelity_pick = 0
loss = real_bench_mf.fidelity_evaluate(random_config, index_fidelity=fidelity_pick)

List of synthetic benchmarks

Name Dimensionality Axis-aligned Subspace
synt_simple 60 3
synt_medium 100 5
synt_high 300 15
synt_hard 1000 50

List of real world benchmarks

Name Dimensionality Approx. Axis-aligned Subspace
breast_cancer 10 3
diabetes 8 5
leukemia 7 129 22
dna 180 43
rcv1 19 959 75

Cite

If you use this code, please cite:


Šehić Kenan, Gramfort Alexandre, Salmon Joseph and Nardi Luigi. "LassoBench: A High-Dimensional Hyperparameter Optimization Benchmark Suite for Lasso", TBD, 2021.

Owner
Kenan Šehić
Postdoctoral research fellow at Lund University - Department of Computer Science with interest in machine learning and uncertainty quantification
Kenan Šehić
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
Catalyst.Detection

Accelerated DL R&D PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentatio

Catalyst-Team 12 Oct 25, 2021
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
A curated list of awesome deep long-tailed learning resources.

A curated list of awesome deep long-tailed learning resources.

vanint 210 Dec 25, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Code for Massive-scale Decoding for Text Generation using Lattices

Massive-scale Decoding for Text Generation using Lattices Jiacheng Xu, Greg Durrett TL;DR: a new search algorithm to construct lattices encoding many

Jiacheng Xu 37 Dec 18, 2022
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Zhilu Zhang 53 Dec 20, 2022
Repository for "Space-Time Correspondence as a Contrastive Random Walk" (NeurIPS 2020)

Space-Time Correspondence as a Contrastive Random Walk This is the repository for Space-Time Correspondence as a Contrastive Random Walk, published at

A. Jabri 239 Dec 27, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021