RRL: Resnet as representation for Reinforcement Learning

Related tags

Deep LearningRRL
Overview

Quick Links

Wesbite | Paper | Video

RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image classification models are general towards different task, robust to visual distractors, and when used in conjunction with standard Imitation Learning or Reinforcement Learning pipelines can efficiently acquire behaviors directly from proprioceptive inputs.

Final Behaviors acquired using RRL on ADROIT benchmark tasks (left to right) (a) Opening a door (b) Hammering a nail (c) Pen-twirling (d)) Object relocation All Tasks

Setup

RRL codebase can be installed by cloning this repository. Note that it uses git submodules to resolve dependencies. Please follow the steps as below to install correctly.

  1. Clone this repository along with the submodules

    git clone --recursive https://github.com/facebookresearch/RRL.git
    
  2. Install the package using conda. The dependencies (apart from mujoco_py) are listed in env.yml

    conda env create -f env.yml
    
    conda activate rrl
    
  3. The environment require MuJoCo as a dependency. You may need to obtain a license and follow the setup instructions for mujoco_py. Setting up mujoco_py with GPU support is highly recommended.

  4. Install mj_envs and mjrl repositories.

    cd RRL
    pip install -e mjrl/.
    pip install -e mj_envs/.
    pip install -e .
    
  5. Additionally, it requires the demonstrations published by hand_dapg

Running Instructions

  1. First step is to convert the observations of demonstrations provided by hand_dapg to the encoder feature space. An example script is provided here. Note the script saves the demonstrations in a .pickle format inside the rrl/demonstrations directory.

    For the mj_envs tasks :

    python convertDemos.py --env_name hammer-v0 --encoder_type resnet34 -c top -d 
         
    
         
    python convertDemos.py --env_name door-v0 --encoder_type resnet34 -c top -d 
         
    
         
    python convertDemos.py --env_name pen-v0 --encoder_type resnet34 -c vil_camera -d 
         
    
         
    python convertDemos.py --env_name relocate-v0 --encoder_type resnet34 -c cam1 -c cam2 -c cam3 -d 
         
    
         
  2. Launching RRL experiments using DAPG.

    An example launching script is provided job_script.py in the examples/ directory and the configs used are stored in the examples/config/ directory. Note : Hydra configs are used.

    python job_script.py  demo_file=
         
           --config-name hammer_dapg
    
         
    python job_script.py  demo_file=
         
           --config-name door_dapg
    
         
    python job_script.py  demo_file=
         
           --config-name pen_dapg
    
         
    python job_script.py  demo_file=
         
           --config-name relocate_dapg
    
         
Owner
Meta Research
Meta Research
[ECCV 2020] Reimplementation of 3DDFAv2, including face mesh, head pose, landmarks, and more.

Stable Head Pose Estimation and Landmark Regression via 3D Dense Face Reconstruction Reimplementation of (ECCV 2020) Towards Fast, Accurate and Stable

Remilia Scarlet 221 Dec 30, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
Code for the paper "Adapting Monolingual Models: Data can be Scarce when Language Similarity is High"

Wietse de Vries • Martijn Bartelds • Malvina Nissim • Martijn Wieling Adapting Monolingual Models: Data can be Scarce when Language Similarity is High

Wietse de Vries 5 Aug 02, 2021
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022
A pytorch-based deep learning framework for multi-modal 2D/3D medical image segmentation

A 3D multi-modal medical image segmentation library in PyTorch We strongly believe in open and reproducible deep learning research. Our goal is to imp

Adaloglou Nikolas 1.2k Dec 27, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
For visualizing the dair-v2x-i dataset

3D Detection & Tracking Viewer The project is based on hailanyi/3D-Detection-Tracking-Viewer and is modified, you can find the original version of the

34 Dec 29, 2022
TensorFlow-based implementation of "Pyramid Scene Parsing Network".

PSPNet_tensorflow Important Code is fine for inference. However, the training code is just for reference and might be only used for fine-tuning. If yo

HsuanKung Yang 323 Dec 20, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
Tiny Object Detection in Aerial Images.

AI-TOD AI-TOD is a dataset for tiny object detection in aerial images. [Paper] [Dataset] Description AI-TOD comes with 700,621 object instances for ei

jwwangchn 116 Dec 30, 2022