Adversarial Reweighting for Partial Domain Adaptation

Overview

Adversarial Reweighting for Partial Domain Adaptation

Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Partial Domain Adaptation, Conference on Neural Information Processing Systems (NeurIPS), 2021".

Prerequisites:

python==3.6.13
pytorch ==1.5.1
torchvision ==0.6.1
numpy==1.19.2
cvxpy ==1.1.14
tqdm ==4.1.2
Pillow == 8.3.1

Datasets:

Download the datasets of
VisDA-2017
DomainNet
Office-Home
Office
ImageNet
Caltech-256
and put them into the folder "./data/" and modify the path of images in each '.txt' under the folder './data/'. Note the full list of ImageNet (imagenet.txt) is too big. Please download it here and put it into './data/imagenet_caltech/'.

Domain ID:

VisDA-2017: train (synthetic), validation (real) ==> 0,1
DomainNet: clipart, painting, real, sketch ==> 0,1,2,3
Office-Home: Art, Clipart, Product, RealWorld ==> 0,1,2,3
Office: amazon, dslr, webcam ==> 0,1,2
ImageNet-Caltech: imagenet, caltech ==> 0,1

Training

VisDA-2017:

python train.py --dset visda-2017 --s 0 --t 1

DomainNet:

python train.py --dset domainnet --s 0 --t 1

Office-Home:

#for AR
python train.py --dset office_home --s 0 --t 1
#for AR+LS
python train.py --dset office_home --s 0 --t 1 --label_smooth

Office:

python train.py --dset office --s 0 --t 1

ImageNet-Caltech:

python train.py --dset imagenet_caltech --s 0 --t 1

Citation:

@inproceedings{
gu2021adversarial,
title={Adversarial Reweighting for Partial Domain Adaptation},
author={Xiang Gu and Xi Yu and Yan Yang and Jian Sun and Zongben Xu},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=f5liPryFRoA}
}

Reference code:

https://github.com/thuml/CDAN
https://github.com/tim-learn/BA3US
https://github.com/XJTU-XGU/RSDA

Contact๏ผš

If you have any problem, feel free to contect [email protected].

PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022) Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Uns

Intelligent Vision for Robotics in Complex Environment 91 Dec 30, 2022
Saeed Lotfi 28 Dec 12, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
A best practice for tensorflow project template architecture.

A best practice for tensorflow project template architecture.

Mahmoud Gamal Salem 3.6k Dec 22, 2022
This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Introduction This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolut

Microsoft 408 Dec 30, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers ๐Ÿ”ฅ

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program

50-days-of-Statistics-for-Data-Science - This repository consist of a 50-day program. All the statistics required for the complete understanding of data science will be uploaded in this repository.

komal_lamba 22 Dec 09, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
NumPy๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. (์ž๋™ ๋ฏธ๋ถ„ ์ง€์›)

Deep Learning Library only using NumPy ๋ณธ ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋Š” NumPy ๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„์ด ๊ตฌํ˜„๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„ ์ž๋™ ๋ฏธ๋ถ„์€ ๋ฏธ๋ถ„์„ ์ž๋™์œผ๋กœ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•ด ์—ญ์ „ํŒŒ

์กฐ์ค€ํฌ 17 Aug 16, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

ๅŸบไบŽPaddleๅฎž็ŽฐPiT โ€”โ€”Rethinking Spatial Dimensions of Vision Transformers,arxiv ๅฎ˜ๆ–นๅŽŸ็‰ˆไปฃ

Hongtao Wen 4 Jan 15, 2022
IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

SSKT(Accepted WACV2022) Concept map Dataset Image dataset CIFAR10 (torchvision) CIFAR100 (torchvision) STL10 (torchvision) Pascal VOC (torchvision) Im

1 Nov 17, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022