This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Overview

Introduction

This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolutional vision Transformers (CvT), that improves Vision Transformers (ViT) in performance and efficienty by introducing convolutions into ViT to yield the best of both disignes. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (e.g. shift, scale, and distortion invariance) while maintaining the merits of Transformers (e.g. dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger dataset (e.g. ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks.

Main results

Models pre-trained on ImageNet-1k

Model Resolution Param GFLOPs Top-1
CvT-13 224x224 20M 4.5 81.6
CvT-21 224x224 32M 7.1 82.5
CvT-13 384x384 20M 16.3 83.0
CvT-32 384x384 32M 24.9 83.3

Models pre-trained on ImageNet-22k

Model Resolution Param GFLOPs Top-1
CvT-13 384x384 20M 16.3 83.3
CvT-32 384x384 32M 24.9 84.9
CvT-W24 384x384 277M 193.2 87.6

You can download all the models from our model zoo.

Quick start

Installation

Assuming that you have installed PyTroch and TorchVision, if not, please follow the officiall instruction to install them firstly. Intall the dependencies using cmd:

python -m pip install -r requirements.txt --user -q

The code is developed and tested using pytorch 1.7.1. Other versions of pytorch are not fully tested.

Data preparation

Please prepare the data as following:

|-DATASET
  |-imagenet
    |-train
    | |-class1
    | | |-img1.jpg
    | | |-img2.jpg
    | | |-...
    | |-class2
    | | |-img3.jpg
    | | |-...
    | |-class3
    | | |-img4.jpg
    | | |-...
    | |-...
    |-val
      |-class1
      | |-img5.jpg
      | |-...
      |-class2
      | |-img6.jpg
      | |-...
      |-class3
      | |-img7.jpg
      | |-...
      |-...

Run

Each experiment is defined by a yaml config file, which is saved under the directory of experiments. The directory of experiments has a tree structure like this:

experiments
|-{DATASET_A}
| |-{ARCH_A}
| |-{ARCH_B}
|-{DATASET_B}
| |-{ARCH_A}
| |-{ARCH_B}
|-{DATASET_C}
| |-{ARCH_A}
| |-{ARCH_B}
|-...

We provide a run.sh script for running jobs in local machine.

Usage: run.sh [run_options]
Options:
  -g|--gpus <1> - number of gpus to be used
  -t|--job-type <aml> - job type (train|test)
  -p|--port <9000> - master port
  -i|--install-deps - If install dependencies (default: False)

Training on local machine

bash run.sh -g 8 -t train --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml

You can also modify the config paramters by the command line. For example, if you want to change the lr rate to 0.1, you can run the command:

bash run.sh -g 8 -t train --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml TRAIN.LR 0.1

Notes:

  • The checkpoint, model, and log files will be saved in OUTPUT/{dataset}/{training config} by default.

Testing pre-trained models

bash run.sh -t test --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml TEST.MODEL_FILE ${PRETRAINED_MODLE_FILE}

Citation

If you find this work or code is helpful in your research, please cite:

@article{wu2021cvt,
  title={Cvt: Introducing convolutions to vision transformers},
  author={Wu, Haiping and Xiao, Bin and Codella, Noel and Liu, Mengchen and Dai, Xiyang and Yuan, Lu and Zhang, Lei},
  journal={arXiv preprint arXiv:2103.15808},
  year={2021}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Python package to add text to images, textures and different backgrounds

nider Python package for text images generation and watermarking Free software: MIT license Documentation: https://nider.readthedocs.io. nider is an a

Vladyslav Ovchynnykov 131 Dec 30, 2022
Working demo of the Multi-class and Anomaly classification model using the CLIP feature space

👁️ Hindsight AI: Crime Classification With Clip About For Educational Purposes Only This is a recursive neural net trained to classify specific crime

Miles Tweed 2 Jun 05, 2022
ReLoss - Official implementation for paper "Relational Surrogate Loss Learning" ICLR 2022

Relational Surrogate Loss Learning (ReLoss) Official implementation for paper "R

Tao Huang 31 Nov 22, 2022
Exporter for Storage Area Network (SAN)

SAN Exporter Prometheus exporter for Storage Area Network (SAN). We all know that each SAN Storage vendor has their own glossary of terms, health/perf

vCloud 32 Dec 16, 2022
Self-Supervised Speech Pre-training and Representation Learning Toolkit.

What's New Sep 2021: We host a challenge in AAAI workshop: The 2nd Self-supervised Learning for Audio and Speech Processing! See SUPERB official site

s3prl 1.6k Jan 08, 2023
Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy.

Deploy tensorflow graphs for fast evaluation and export to tensorflow-less environments running numpy. Now with tensorflow 1.0 support. Evaluation usa

Marcel R. 349 Aug 06, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Fre-GAN: Adversarial Frequency-consistent Audio Synthesis

Fre-GAN Vocoder Fre-GAN: Adversarial Frequency-consistent Audio Synthesis Training: python train.py --config config.json Citation: @misc{kim2021frega

Rishikesh (ऋषिकेश) 93 Dec 17, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
[AAAI-2022] Official implementations of MCL: Mutual Contrastive Learning for Visual Representation Learning

Mutual Contrastive Learning for Visual Representation Learning This project provides source code for our Mutual Contrastive Learning for Visual Repres

winycg 48 Jan 02, 2023
pixelNeRF: Neural Radiance Fields from One or Few Images

pixelNeRF: Neural Radiance Fields from One or Few Images Alex Yu, Vickie Ye, Matthew Tancik, Angjoo Kanazawa UC Berkeley arXiv: http://arxiv.org/abs/2

Alex Yu 1k Jan 04, 2023
[ICLR 2021] Is Attention Better Than Matrix Decomposition?

Enjoy-Hamburger 🍔 Official implementation of Hamburger, Is Attention Better Than Matrix Decomposition? (ICLR 2021) Under construction. Introduction T

Gsunshine 271 Dec 29, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience

Removing Inter-Experimental Variability from Functional Data in Systems Neuroscience This repository is the official implementation of [https://www.bi

Eulerlab 6 Oct 09, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
Deep Learning for 3D Point Clouds: A Survey (IEEE TPAMI, 2020)

🔥Deep Learning for 3D Point Clouds (IEEE TPAMI, 2020)

Qingyong 1.4k Jan 08, 2023
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022