Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Related tags

Deep LearningUDAT
Overview

Unsupervised Domain Adaptation for Nighttime Aerial Tracking (CVPR2022)

Junjie Ye, Changhong Fu, Guangze Zheng, Danda Pani Paudel, and Guang Chen. Unsupervised Domain Adaptation for Nighttime Aerial Tracking. In CVPR, pages 1-10, 2022.

featured

Overview

UDAT is an unsupervised domain adaptation framework for visual object tracking. This repo contains its Python implementation.

Paper | NAT2021 benchmark

Testing UDAT

1. Preprocessing

Before training, we need to preprocess the unlabelled training data to generate training pairs.

  1. Download the proposed NAT2021-train set

  2. Customize the directory of the train set in lowlight_enhancement.py and enhance the nighttime sequences

    cd preprocessing/
    python lowlight_enhancement.py # enhanced sequences will be saved at '/YOUR/PATH/NAT2021/train/data_seq_enhanced/'
  3. Download the video saliency detection model here and place it at preprocessing/models/checkpoints/.

  4. Predict salient objects and obtain candidate boxes

    python inference.py # candidate boxes will be saved at 'coarse_boxes/' as .npy
  5. Generate pseudo annotations from candidate boxes using dynamic programming

    python gen_seq_bboxes.py # pseudo box sequences will be saved at 'pseudo_anno/'
  6. Generate cropped training patches and a JSON file for training

    python par_crop.py
    python gen_json.py

2. Train

Take UDAT-CAR for instance.

  1. Apart from above target domain dataset NAT2021, you need to download and prepare source domain datasets VID and GOT-10K.

  2. Download the pre-trained daytime model (SiamCAR/SiamBAN) and place it at UDAT/tools/snapshot.

  3. Start training

    cd UDAT/CAR
    export PYTHONPATH=$PWD
    python tools/train.py

3. Test

Take UDAT-CAR for instance.

  1. For quick test, you can download our trained model for UDAT-CAR (or UDAT-BAN) and place it at UDAT/CAR/experiments/udatcar_r50_l234.

  2. Start testing

    python tools/test.py --dataset NAT

4. Eval

  1. Start evaluating
    python tools/eval.py --dataset NAT

Demo

Demo video

Reference

@Inproceedings{Ye2022CVPR,

title={{Unsupervised Domain Adaptation for Nighttime Aerial Tracking}},

author={Ye, Junjie and Fu, Changhong and Zheng, Guangze and Paudel, Danda Pani and Chen, Guang},

booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},

year={2022},

pages={1-10}

}

Acknowledgments

We sincerely thank the contribution of following repos: SiamCAR, SiamBAN, DCFNet, DCE, and USOT.

Contact

If you have any questions, please contact Junjie Ye at [email protected] or Changhong Fu at [email protected].

Owner
Intelligent Vision for Robotics in Complex Environment
Adaptive Vision for Robotics in Complex Environment
Intelligent Vision for Robotics in Complex Environment
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
🎁 3,000,000+ Unsplash images made available for research and machine learning

The Unsplash Dataset The Unsplash Dataset is made up of over 250,000+ contributing global photographers and data sourced from hundreds of millions of

Unsplash 2k Jan 03, 2023
Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning

Harmonious Textual Layout Generation over Natural Images via Deep Aesthetics Learning Code for the paper Harmonious Textual Layout Generation over Nat

7 Aug 09, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Here I will explain the flow to deploy your custom deep learning models on Ultra96V2.

Xilinx_Vitis_AI This repo will help you to Deploy your Deep Learning Model on Ultra96v2 Board. Prerequisites Vitis Core Development Kit 2019.2 This co

Amin Mamandipoor 1 Feb 08, 2022
MaskTrackRCNN for video instance segmentation based on mmdetection

MaskTrackRCNN for video instance segmentation Introduction This repo serves as the official code release of the MaskTrackRCNN model for video instance

411 Jan 05, 2023
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Segmenter: Transformer for Semantic Segmentation Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and

594 Jan 06, 2023
Dataset and codebase for NeurIPS 2021 paper: Exploring Forensic Dental Identification with Deep Learning

Repository under construction. Example dataset, checkpoints, and training/testing scripts will be avaible soon! 💡 Collated best practices from most p

4 Jun 26, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
🔥 Cogitare - A Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python

Cogitare is a Modern, Fast, and Modular Deep Learning and Machine Learning framework for Python. A friendly interface for beginners and a powerful too

Cogitare - Modern and Easy Deep Learning with Python 76 Sep 30, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Systematic generalisation with group invariant predictions

Requirements are Python 3, TensorFlow v1.14, Numpy, Scipy, Scikit-Learn, Matplotlib, Pillow, Scikit-Image, h5py, tqdm. Experiments were run on V100 GPUs (16 and 32GB).

Faruk Ahmed 30 Dec 01, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022