Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Overview

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?"

Install // Datasets // Experiments // Models // License // Reference

Full video

Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

Installation

We recommend using docker (see nvidia-docker2 instructions) to have a reproducible environment. To setup your environment, type in a terminal (only tested in Ubuntu 18.04):

git clone https://github.com/TRI-ML/dd3d.git
cd dd3d
# If you want to use docker (recommended)
make docker-build # CUDA 10.2
# Alternative docker image for cuda 11.1
# make docker-build DOCKERFILE=Dockerfile-cu111

Please check the version of your nvidia driver and cuda compatibility to determine which Dockerfile to use.

We will list below all commands as if run directly inside our container. To run any of the commands in a container, you can either start the container in interactive mode with make docker-dev to land in a shell where you can type those commands, or you can do it in one step:

# single GPU
make docker-run COMMAND="<some-command>"
# multi GPU
make docker-run-mpi COMMAND="<some-command>"

If you want to use features related to AWS (for caching the output directory) and Weights & Biases (for experiment management/visualization), then you should create associated accounts and configure your shell with the following environment variables before building the docker image:

export AWS_SECRET_ACCESS_KEY="<something>"
export AWS_ACCESS_KEY_ID="<something>"
export AWS_DEFAULT_REGION="<something>"
export WANDB_ENTITY="<something>"
export WANDB_API_KEY="<something>"

You should also enable these features in configuration, such as WANDB.ENABLED and SYNC_OUTPUT_DIR_S3.ENABLED.

Datasets

By default, datasets are assumed to be downloaded in /data/datasets/<dataset-name> (can be a symbolic link). The dataset root is configurable by DATASET_ROOT.

KITTI

The KITTI 3D dataset used in our experiments can be downloaded from the KITTI website. For convenience, we provide the standard splits used in 3DOP for training and evaluation:

# download a standard splits subset of KITTI
curl -s https://tri-ml-public.s3.amazonaws.com/github/dd3d/mv3d_kitti_splits.tar | sudo tar xv -C /data/datasets/KITTI3D

The dataset must be organized as follows:

<DATASET_ROOT>
    └── KITTI3D
        ├── mv3d_kitti_splits
        │   ├── test.txt
        │   ├── train.txt
        │   ├── trainval.txt
        │   └── val.txt
        ├── testing
        │   ├── calib
        |   │   ├── 000000.txt
        |   │   ├── 000001.txt
        |   │   └── ...
        │   └── image_2
        │       ├── 000000.png
        │       ├── 000001.png
        │       └── ...
        └── training
            ├── calib
            │   ├── 000000.txt
            │   ├── 000001.txt
            │   └── ...
            ├── image_2
            │   ├── 000000.png
            │   ├── 000001.png
            │   └── ...
            └── label_2
                ├── 000000.txt
                ├── 000001.txt
                └── ..

nuScenes

The nuScenes dataset (v1.0) can be downloaded from the nuScenes website. The dataset must be organized as follows:

<DATASET_ROOT>
    └── nuScenes
        ├── samples
        │   ├── CAM_FRONT
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT__1526915243012465.jpg
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT__1526915243512465.jpg
        │   │   ├── ...
        │   │  
        │   ├── CAM_FRONT_LEFT
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT_LEFT__1526915243004917.jpg
        │   │   ├── n008-2018-05-21-11-06-59-0400__CAM_FRONT_LEFT__1526915243504917.jpg
        │   │   ├── ...
        │   │  
        │   ├── ...
        │  
        ├── v1.0-trainval
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...
        │  
        ├── v1.0-test
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...
        │  
        ├── v1.0-mini
        │   ├── attribute.json
        │   ├── calibrated_sensor.json
        │   ├── category.json
        │   ├── ...

Pre-trained DD3D models

The DD3D models pre-trained on dense depth estimation using DDAD15M can be downloaded here:

backbone download
DLA34 model
V2-99 model

(Optional) Eigen-clean subset of KITTI raw.

To train our Pseudo-Lidar detector, we curated a new subset of KITTI (raw) dataset and use it to fine-tune its depth network. This subset can be downloaded here. Each row contains left and right image pairs. The KITTI raw dataset can be download here.

Validating installation

To validate and visualize the dataloader (including data augmentation), run the following:

./scripts/visualize_dataloader.py +experiments=dd3d_kitti_dla34 SOLVER.IMS_PER_BATCH=4

To validate the entire training loop (including evaluation and visualization), run the overfit experiment (trained on test set):

./scripts/train.py +experiments=dd3d_kitti_dla34_overfit
experiment backbone train mem. (GB) train time (hr) train log Box AP (%) BEV AP (%) download
config DLA-34 6 0.25 log 84.54 88.83 model

Experiments

Configuration

We use hydra to configure experiments, specifically following this pattern to organize and compose configurations. The experiments under configs/experiments describe the delta from the default configuration, and can be run as follows:

# omit the '.yaml' extension from the experiment file.
./scripts/train.py +experiments=<experiment-file> <config-override>

The configuration is modularized by various components such as datasets, backbones, evaluators, and visualizers, etc.

Using multiple GPUs

The training script supports (single-node) multi-GPU for training and evaluation via mpirun. This is most conveniently executed by the make docker-run-mpi command (see above). Internally, IMS_PER_BATCH parameters of the optimizer and the evaluator denote the total size of batch that is sharded across available GPUs while training or evaluating. They are required to be set as a multuple of available GPUs.

Evaluation

One can run only evaluation using the pretrained models:

./scripts/train.py +experiments=<some-experiment> EVAL_ONLY=True MODEL.CKPT=<path-to-pretrained-model>
# use smaller batch size for single-gpu
./scripts/train.py +experiments=<some-experiment> EVAL_ONLY=True MODEL.CKPT=<path-to-pretrained-model> TEST.IMS_PER_BATCH=4

Gradient accumulation

If you have insufficient GPU memory for any experiment, you can use gradient accumulation by configuring ACCUMULATE_GRAD_BATCHES, at the cost of longer training time. For instance, if the experiment requires at least 400 of GPU memory (e.g. V2-99, KITTI) and you have only 128 (e.g., 8 x 16G GPUs), then you can update parameters at every 4th step:

# The original batch size is 64.
./scripts/train.py +experiments=dd3d_kitti_v99 SOLVER.IMS_PER_BATCH=16 SOLVER.ACCUMULATE_GRAD_BATCHES=4

Models

All experiments here use 8 A100 40G GPUs, and use gradient accumulation when more GPU memory is needed. We subsample nuScenes validation set by a factor of 8 (2Hz ⟶ 0.25Hz) to save training time.

KITTI

experiment backbone train mem. (GB) train time (hr) train log Box AP (%) BEV AP (%) download
config DLA-34 256 4.5 log 16.92 24.77 model
config V2-99 400 9.0 log 23.90 32.01 model

nuScenes

experiment backbone train mem. (GB) train time (hr) train log mAP (%) NDS download
config DLA-34 TBD TBD TBD) TBD TBD TBD
config V2-99 TBD TBD TBD TBD TBD TBD

License

The source code is released under the MIT license. We note that some code in this repository is adapted from the following repositories:

Reference

@inproceedings{park2021dd3d,
  author = {Dennis Park and Rares Ambrus and Vitor Guizilini and Jie Li and Adrien Gaidon},
  title = {Is Pseudo-Lidar needed for Monocular 3D Object detection?},
  booktitle = {IEEE/CVF International Conference on Computer Vision (ICCV)},
  primaryClass = {cs.CV},
  year = {2021},
}
Owner
Toyota Research Institute - Machine Learning
Toyota Research Institute - Machine Learning
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
FastReID is a research platform that implements state-of-the-art re-identification algorithms.

FastReID is a research platform that implements state-of-the-art re-identification algorithms.

JDAI-CV 2.8k Jan 07, 2023
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
A Python library for Deep Graph Networks

PyDGN Wiki Description This is a Python library to easily experiment with Deep Graph Networks (DGNs). It provides automatic management of data splitti

Federico Errica 194 Dec 22, 2022
A simple code to convert image format and channel as well as resizing and renaming multiple images.

Rename-Resize-and-convert-multiple-images A simple code to convert image format and channel as well as resizing and renaming multiple images. This cod

Happy N. Monday 3 Feb 15, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
Data & Code for ACCENTOR Adding Chit-Chat to Enhance Task-Oriented Dialogues

ACCENTOR: Adding Chit-Chat to Enhance Task-Oriented Dialogues Overview ACCENTOR consists of the human-annotated chit-chat additions to the 23.8K dialo

Facebook Research 69 Dec 29, 2022
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
iBOT: Image BERT Pre-Training with Online Tokenizer

Image BERT Pre-Training with iBOT Official PyTorch implementation and pretrained models for paper iBOT: Image BERT Pre-Training with Online Tokenizer.

Bytedance Inc. 435 Jan 06, 2023
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Fastquant - Backtest and optimize your trading strategies with only 3 lines of code!

fastquant 🤓 Bringing backtesting to the mainstream fastquant allows you to easily backtest investment strategies with as few as 3 lines of python cod

Lorenzo Ampil 1k Dec 29, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

ming71 55 Dec 12, 2022