[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

Overview

DrRepair: Learning to Repair Programs from Error Messages

This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program Repair from Diagnostic Feedback (ICML 2020).

@InProceedings{Yasunaga20DrRepair,
  author =  {Michihiro Yasunaga and Percy Liang},
  title =   {Graph-based, Self-Supervised Program Repair from Diagnostic Feedback},
  year =    {2020},  
  booktitle =   {International Conference on Machine Learning (ICML)},  
}

Dependencies

  • GCC: Follow the SPoC requirement (https://github.com/Sumith1896/spoc)
  • Python 3.6.8 (e.g. conda create -n DrRepair python=3.6.8)
  • Python libraries
    • torch==1.0.1, numpy, tqdm, regex, joblib, pyyaml, bottle, cheroot, tensorboardX
    • clang==8.0.1 (do the following)
      conda config --add channels conda-forge
      conda install python-clang==8.0.1
      

Data

Download all the raw data -- DeepFix, SPoC, codeforce (for pretraining) -- by

./download_raw_data.sh

You can preprocess the raw data to get the program repair data by running the commands in

data/1.run-gen-err-dataset--orig-spoc.sh
data/2.run-gen-err-dataset--auto-corrupt--spoc.sh
data/3.run-gen-err-dataset--auto-corrupt--deepfix.sh

However, this takes a significant time, so for your convenience, you can download all the preprocessed data by

./download_preprocessed_data.sh

The repo structure looks like the following:

.
└─ raw_data/
   ├── codeforce_data/                  (raw programs from codeforce)
   ├── deepfix_data/                    (raw programs from deepfix)
   └── spoc_data/
       ├── spoc                              (SPoC data release)
       └── translation_preds                 (line-level code predictions from Kulal+19)

└─ data/                             
   ├── *.sh, *.py                       (preprocessing scripts)
   ├── err-data-compiler--orig-spoc/    (preprocessed, program repair data for spoc)
   ├── err-dev-compiler--for-SPoC/      (└─ dev data for spoc)
   ├── err-vocab-compiler--for-SPoC/    (└─ vocab for spoc)
   ...
   ... [similarly for deepfix and pre-training]

└─ utils/                      (utilities for code processing)

└─ model/                      (DrRepair model)

└─ evaluation/                 (to evaluate Repair model on deepfix/spoc test)
   ├── deepfix
   └── spoc
       ├── translation_preds_test/           (line-level code predictions from Kulal+19 for TestP/TestW)
       ...

Train models

Let's train program repair models. First, go to model directory. Then, run commands listed in run_deepfix.sh or run_spoc.sh. For example, if we train DrRepair ("base + graph" in the paper) on the DeepFix data, run:

name="code-compiler--2l-graph"
mkdir -p out_deepfix/${name}
python3 -u main_deepfix.py -o ${name} train \
    configs/base.yml  configs/data-deepfix/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

Evaluate models

We run the trained program repair model as a server. We then call this model on application tasks (DeepFix and SPoC) to evaluate the usefulness of the model.

DeepFix

1. Start server

First, go to model directory. We run a trained model (e.g. code-compiler--2l-graph) as a server by

name="SERVER--code-compiler--2l-graph"
mkdir out_deepfix/${name}
python3 -u main_deepfix.py -o ${name} server -p <port> \
    -l out_deepfix/code-compiler--2l-graph/<checkpoint> \
    configs/base.yml  configs/data-deepfix/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

For <port>, pick a port number (e.g. 8080) for the server. For <checkpoint>, pick a checkpoint (e.g. 150000) of the trained model. Then run ifconfig to get the IP address (e.g. 172.24.67.161) of the machine hosting this model. Concrete examples are provided in the second half of model/run_deepfix.sh.

2. Run model on DeepFix test

Go to evaluation/deepfix directory. First prepare:

repo_root="../../../.."
program_data_root=${repo_root}"/raw_data/deepfix_data"
test_split_root=${repo_root}"/data/err-data-compiler--auto-corrupt--orig-deepfix/bin4"

To run the trained model on the DeepFix test examples, do

name="code-compiler--2l-graph"
mkdir -p out/${name}/log
cd out/${name}

for entry in ${test_split_root}/*
do
  probid=`basename $entry`
  python3 -u ../../test_deepfix.py \
  --input-code-dir ${program_data_root}/${probid}/erroneous \
  --repairer-server  http://<IP>:<port>/pred
done

where you plug the IP address and port number into <IP> and <port>. After this completes, you can get the test accuracy by

python3 -u ../../collate_deepfix.py

Concrete examples are provided in evaluation/run_test_deepfix.sh.

SPoC

1. Start server

First, go to model directory. We run a trained model (e.g. code-compiler--2l-graph--finetune) as a server by

name="SERVER--code-compiler--2l-graph--finetune"
mkdir out_spoc/${name}
python3 -u main_spoc.py -o ${name} server -p <port> \
    -l out_spoc/code-compiler--2l-graph--finetune/<checkpoint> \
    configs/base.yml  configs/data-spoc/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

Similar to DeepFix, pick a port number and a checkpoint, and get the IP address. Concrete examples are provided in the second half of model/run_spoc.sh.

2. Run model on SPoC test

Go to evaluation/spoc directory. First prepare:

repo_root="../../../.."

To run the trained model on all the programs in SPoC TestW, do

name="code-compiler--2l-graph--finetune"

INPUT=translation_preds_test/testw    #change to testp if you want to evaluate on testp
N=$(tail -n+2 ${INPUT}.tsv | cut -f 3-6 | uniq | wc -l)  # Count the number of programs
interval=10

mkdir -p out_testw/${name}/log        #change to testp if you want to evaluate on testp
cd out_testw/${name}                  #change to testp if you want to evaluate on testp

i=1
while [[ $i -le $N ]]; do
  python -u ../../test_spoc.py -p 100 \
  --compile-budget 100 --n-parallel ${interval} \
  --repairer-server  http://<IP>:<port>/pred \
  ../../${INPUT} $i
  i=$(($i + ${interval}))
done

where you plug the IP address and port number into <IP> and <port>. After this completes, you can get the test accuracy by

python3 -u ../../collate_spoc.py

Concrete examples are provided in evaluation/run_test_spoc.sh.

Acknowledgment

The original DeepFix and SPoC data used in this work come from the following papers:

DeepFix: Fixing common C language errors by deep learning. Rahul Gupta, Soham Pal, Aditya Kanade, Shirish Shevade. AAAI 2017.
SPoC: Search-based Pseudocode to Code. Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken and Percy Liang. NeurIPS 2019.
Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
A graph adversarial learning toolbox based on PyTorch and DGL.

GraphWar: Arms Race in Graph Adversarial Learning NOTE: GraphWar is still in the early stages and the API will likely continue to change. 🚀 Installat

Jintang Li 54 Jan 05, 2023
Oscar and VinVL

Oscar: Object-Semantics Aligned Pre-training for Vision-and-Language Tasks VinVL: Revisiting Visual Representations in Vision-Language Models Updates

Microsoft 938 Dec 26, 2022
A really easy-to-use and powerful sudoku solver.

SodukuSolver This is a really useful sudoku solver with a Qt gui. USAGE Enter the numbers in and click "RUN"! If you don't want to wait, simply press

Ujhhgtg Teams 11 Jun 02, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Dynamic Head: Unifying Object Detection Heads with Attentions

Dynamic Head: Unifying Object Detection Heads with Attentions dyhead_video.mp4 This is the official implementation of CVPR 2021 paper "Dynamic Head: U

Microsoft 550 Dec 21, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Code for "Neural 3D Scene Reconstruction with the Manhattan-world Assumption" CVPR 2022 Oral

News 05/10/2022 To make the comparison on ScanNet easier, we provide all quantitative and qualitative results of baselines here, including COLMAP, COL

ZJU3DV 365 Dec 30, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank

This repository provides the official code for replicating experiments from the paper: Semi-Supervised Semantic Segmentation with Pixel-Level Contrast

Iñigo Alonso Ruiz 58 Dec 15, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022