[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

Overview

DrRepair: Learning to Repair Programs from Error Messages

This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program Repair from Diagnostic Feedback (ICML 2020).

@InProceedings{Yasunaga20DrRepair,
  author =  {Michihiro Yasunaga and Percy Liang},
  title =   {Graph-based, Self-Supervised Program Repair from Diagnostic Feedback},
  year =    {2020},  
  booktitle =   {International Conference on Machine Learning (ICML)},  
}

Dependencies

  • GCC: Follow the SPoC requirement (https://github.com/Sumith1896/spoc)
  • Python 3.6.8 (e.g. conda create -n DrRepair python=3.6.8)
  • Python libraries
    • torch==1.0.1, numpy, tqdm, regex, joblib, pyyaml, bottle, cheroot, tensorboardX
    • clang==8.0.1 (do the following)
      conda config --add channels conda-forge
      conda install python-clang==8.0.1
      

Data

Download all the raw data -- DeepFix, SPoC, codeforce (for pretraining) -- by

./download_raw_data.sh

You can preprocess the raw data to get the program repair data by running the commands in

data/1.run-gen-err-dataset--orig-spoc.sh
data/2.run-gen-err-dataset--auto-corrupt--spoc.sh
data/3.run-gen-err-dataset--auto-corrupt--deepfix.sh

However, this takes a significant time, so for your convenience, you can download all the preprocessed data by

./download_preprocessed_data.sh

The repo structure looks like the following:

.
└─ raw_data/
   ├── codeforce_data/                  (raw programs from codeforce)
   ├── deepfix_data/                    (raw programs from deepfix)
   └── spoc_data/
       ├── spoc                              (SPoC data release)
       └── translation_preds                 (line-level code predictions from Kulal+19)

└─ data/                             
   ├── *.sh, *.py                       (preprocessing scripts)
   ├── err-data-compiler--orig-spoc/    (preprocessed, program repair data for spoc)
   ├── err-dev-compiler--for-SPoC/      (└─ dev data for spoc)
   ├── err-vocab-compiler--for-SPoC/    (└─ vocab for spoc)
   ...
   ... [similarly for deepfix and pre-training]

└─ utils/                      (utilities for code processing)

└─ model/                      (DrRepair model)

└─ evaluation/                 (to evaluate Repair model on deepfix/spoc test)
   ├── deepfix
   └── spoc
       ├── translation_preds_test/           (line-level code predictions from Kulal+19 for TestP/TestW)
       ...

Train models

Let's train program repair models. First, go to model directory. Then, run commands listed in run_deepfix.sh or run_spoc.sh. For example, if we train DrRepair ("base + graph" in the paper) on the DeepFix data, run:

name="code-compiler--2l-graph"
mkdir -p out_deepfix/${name}
python3 -u main_deepfix.py -o ${name} train \
    configs/base.yml  configs/data-deepfix/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

Evaluate models

We run the trained program repair model as a server. We then call this model on application tasks (DeepFix and SPoC) to evaluate the usefulness of the model.

DeepFix

1. Start server

First, go to model directory. We run a trained model (e.g. code-compiler--2l-graph) as a server by

name="SERVER--code-compiler--2l-graph"
mkdir out_deepfix/${name}
python3 -u main_deepfix.py -o ${name} server -p <port> \
    -l out_deepfix/code-compiler--2l-graph/<checkpoint> \
    configs/base.yml  configs/data-deepfix/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

For <port>, pick a port number (e.g. 8080) for the server. For <checkpoint>, pick a checkpoint (e.g. 150000) of the trained model. Then run ifconfig to get the IP address (e.g. 172.24.67.161) of the machine hosting this model. Concrete examples are provided in the second half of model/run_deepfix.sh.

2. Run model on DeepFix test

Go to evaluation/deepfix directory. First prepare:

repo_root="../../../.."
program_data_root=${repo_root}"/raw_data/deepfix_data"
test_split_root=${repo_root}"/data/err-data-compiler--auto-corrupt--orig-deepfix/bin4"

To run the trained model on the DeepFix test examples, do

name="code-compiler--2l-graph"
mkdir -p out/${name}/log
cd out/${name}

for entry in ${test_split_root}/*
do
  probid=`basename $entry`
  python3 -u ../../test_deepfix.py \
  --input-code-dir ${program_data_root}/${probid}/erroneous \
  --repairer-server  http://<IP>:<port>/pred
done

where you plug the IP address and port number into <IP> and <port>. After this completes, you can get the test accuracy by

python3 -u ../../collate_deepfix.py

Concrete examples are provided in evaluation/run_test_deepfix.sh.

SPoC

1. Start server

First, go to model directory. We run a trained model (e.g. code-compiler--2l-graph--finetune) as a server by

name="SERVER--code-compiler--2l-graph--finetune"
mkdir out_spoc/${name}
python3 -u main_spoc.py -o ${name} server -p <port> \
    -l out_spoc/code-compiler--2l-graph--finetune/<checkpoint> \
    configs/base.yml  configs/data-spoc/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

Similar to DeepFix, pick a port number and a checkpoint, and get the IP address. Concrete examples are provided in the second half of model/run_spoc.sh.

2. Run model on SPoC test

Go to evaluation/spoc directory. First prepare:

repo_root="../../../.."

To run the trained model on all the programs in SPoC TestW, do

name="code-compiler--2l-graph--finetune"

INPUT=translation_preds_test/testw    #change to testp if you want to evaluate on testp
N=$(tail -n+2 ${INPUT}.tsv | cut -f 3-6 | uniq | wc -l)  # Count the number of programs
interval=10

mkdir -p out_testw/${name}/log        #change to testp if you want to evaluate on testp
cd out_testw/${name}                  #change to testp if you want to evaluate on testp

i=1
while [[ $i -le $N ]]; do
  python -u ../../test_spoc.py -p 100 \
  --compile-budget 100 --n-parallel ${interval} \
  --repairer-server  http://<IP>:<port>/pred \
  ../../${INPUT} $i
  i=$(($i + ${interval}))
done

where you plug the IP address and port number into <IP> and <port>. After this completes, you can get the test accuracy by

python3 -u ../../collate_spoc.py

Concrete examples are provided in evaluation/run_test_spoc.sh.

Acknowledgment

The original DeepFix and SPoC data used in this work come from the following papers:

DeepFix: Fixing common C language errors by deep learning. Rahul Gupta, Soham Pal, Aditya Kanade, Shirish Shevade. AAAI 2017.
SPoC: Search-based Pseudocode to Code. Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken and Percy Liang. NeurIPS 2019.
Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Code for the paper Learning the Predictability of the Future

Learning the Predictability of the Future Code from the paper Learning the Predictability of the Future. Website of the project in hyperfuture.cs.colu

Computer Vision Lab at Columbia University 139 Nov 18, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
Mscp jamf - Build compliance in jamf

mscp_jamf Build compliance in Jamf. This will build the following xml pieces to

Bob Gendler 3 Jul 25, 2022
DLL: Direct Lidar Localization

DLL: Direct Lidar Localization Summary This package presents DLL, a direct map-based localization technique using 3D LIDAR for its application to aeri

Service Robotics Lab 127 Dec 16, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
Automatic number plate recognition using tech: Yolo, OCR, Scene text detection, scene text recognation, flask, torch

Automatic Number Plate Recognition Automatic Number Plate Recognition (ANPR) is the process of reading the characters on the plate with various optica

Meftun AKARSU 52 Dec 22, 2022
DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS) data.

DeepConsensus DeepConsensus uses gap-aware sequence transformers to correct errors in Pacific Biosciences (PacBio) Circular Consensus Sequencing (CCS)

Google 149 Dec 19, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Object DGCNN and DETR3D, Our implementations are built on top of MMdetection3D.

Object DGCNN & DETR3D This repo contains the implementations of Object DGCNN (https://arxiv.org/abs/2110.06923) and DETR3D (https://arxiv.org/abs/2110

Wang, Yue 539 Jan 07, 2023
Algorithmic trading with deep learning experiments

Deep-Trading Algorithmic trading with deep learning experiments. Now released part one - simple time series forecasting. I plan to implement more soph

Alex Honchar 1.4k Jan 02, 2023
Annotate with anyone, anywhere.

h h is the web app that serves most of the https://hypothes.is/ website, including the web annotations API at https://hypothes.is/api/. The Hypothesis

Hypothesis 2.6k Jan 08, 2023
Single-Stage 6D Object Pose Estimation, CVPR 2020

Overview This repository contains the code for the paper Single-Stage 6D Object Pose Estimation. Yinlin Hu, Pascal Fua, Wei Wang and Mathieu Salzmann.

CVLAB @ EPFL 89 Dec 26, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 — Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022