i3DMM: Deep Implicit 3D Morphable Model of Human Heads

Related tags

Deep Learningi3DMM
Overview

i3DMM: Deep Implicit 3D Morphable Model of Human Heads

CVPR 2021 (Oral)

Arxiv | Poject Page

Teaser

This project is the official implementation our work, i3DMM. Much of our code is from DeepSDF's repository. We thank Park et al. for making their code publicly available.

The pretrained model is included in this repository.

Setup

  1. To get started, clone this repository into a local directory.
  2. Install Anaconda, if you don't already have it.
  3. Create a conda environment in the path with the following command:
conda create -p ./i3dmm_env
  1. Activate the conda environment from the same folder:
conda activate ./i3dmm_env
  1. Use the following commands to install required packages:
conda install pytorch=1.1 cudatoolkit=10.0 -c pytorch
pip install opencv-python trimesh[all] scikit-learn mesh-to-sdf plyfile

Preparing Data

Rigid Alignment

We assume that all the input data is rigidly aligned. Therefore, we provide reference 3D landmarks to align your test/training data. Please use centroids.txt file in the model folder to align your data to these landmarks. The landmarks in the file are in the following order:

  1. Right eye left corner
  2. Right eye right corner
  3. Left eye left corner
  4. Left eye right corner
  5. Nose tip
  6. Right lips corner
  7. Left lips corner
  8. Point on the chin The following image shows these landmarks. The centroids.txt file consists of 3D landmarks with coordinates x, y, z. Each file consists of 8 lines. Each line consists of the 3 values in 'x y z' order corresponding to the landmarks described above separated by a space.

Please see our paper for more information on rigid alignment.

Dataset

We closely follow ShapeNet Dataset's folder structure. Please see the a mesh folder in the dataset for an example. The dataset is assumed to be as follows:


   
    /
    
     /
     
      /models/
      
       .obj

       
        /
        
         /
         
          /models/
          
           .mtl 
           
            /
            
             /
             
              /models/
              
               .jpg 
               
                /
                
                 /
                 
                  /models/centroids.txt 
                  
                   /
                   
                    /
                    
                     /models/centroidsEars.txt 
                    
                   
                  
                 
                
               
              
             
            
           
          
         
        
       
      
     
    
   

The model name should be in a specific structure, xxxxx_eyy where xxxxx are 5 characters which identify an identity and yy are unique numbers to specify different expressions and hairstyles. We follow e01 - e10 for different expressions where e07 is neutral expression. e11-e13 are hairstyles in neutral expression. Rest of the expression identifiers are for test expressions.

The centroids.txt file contains landmarks as described in the alignment step. Additionally, to train the model, one could also have centroidEars.txt file which has the 3D ear landmarks in the following order:

  1. Left ear top
  2. Left ear left
  3. Left ear bottom
  4. Left ear right
  5. Right ear top
  6. Right ear left
  7. Right ear bottom
  8. Right ear right These 8 landmarks are as shown in the following image. The file is organized similar to centroids.txt. Please see the a mesh folder in the dataset for an example.

Once the dataset is prepared, create the splits as shown in model/headModel/splits/*.json files. These files are similar to the splits files in DeepSDF.

Preprocessing

The following commands preprocesses the meshes from the dataset described above and places them in data folder. The command must be run from "model" folder. To preprocess training data:

python preprocessData.py --samples_directory ./data --input_meshes_directory 
   
      -e headModel -s Train

   

To preprocess test data:

python preprocessData.py --samples_directory ./data --input_meshes_directory 
   
     -e headModel -s Test

   

'headModel' is the folder containing network settings for the 'specs.json'. The json file also contains split file and preprocessed data paths. The splits files are in model/headModel/splits/*.json These files indicate files that are for testing, training, and reference shape initialisation.

Training the Model

Once data is preprocessed, one can train the model with the following command.

python train_i3DMM.py -e headModel

When working with a large dataset, please consider using batch_split option with a power of 2 (2, 4, 8, 16 etc.). The following command is an example.

python train_i3DMM.py -e headModel --batch_split 2

Additionally, if one considers using landmark supervision or ears constraints for long hair (see paper for details), please export the centroids and ear centroids as a dictionaries with npy files (8 face landmarks: eightCentroids.npy, ear landmarks: gtEarCentroids.npy).

An example entry in the dictionary: {"xxxxx_eyy: 8x3 numpy array"}

Fitting i3DMM to Preprocessed Data

Please see the preprocessing section for preparing the data. Once the data is ready, please use the following command to fit i3DMM to the data.

To save as image:

python fit_i3DMM_to_mesh.py -e headModel -c latest -d data -s 
   
     --imNM True

   

To save as a mesh:

python fit_i3DMM_to_mesh.py -e headModel -c latest -d data -s 
   
     --imNM False

   

Test dataset can be downloaded with this link. Please extract and move the 'heads' folder to dataset folder.

Citation

Please cite our paper if you use any part of this repository.

@inproceedings {yenamandra2020i3dmm,
 author = {T Yenamandra and A Tewari and F Bernard and HP Seidel and M Elgharib and D Cremers and C Theobalt},
 title = {i3DMM: Deep Implicit 3D Morphable Model of Human Heads},
 booktitle = {Proceedings of the IEEE / CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
 month = {June},
 year = {2021}
}
Owner
Tarun Yenamandra
Tarun Yenamandra
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
A CNN implementation using only numpy. Supports multidimensional images, stride, etc.

A CNN implementation using only numpy. Supports multidimensional images, stride, etc. Speed up due to heavy use of slicing and mathematical simplification..

2 Nov 30, 2021
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
This is implementation of AlexNet(2012) with 3D Convolution on TensorFlow (AlexNet 3D).

AlexNet_3dConv TensorFlow implementation of AlexNet(2012) by Alex Krizhevsky, with 3D convolutiional layers. 3D AlexNet Network with a standart AlexNe

Denis Timonin 41 Jan 16, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Code release for Convolutional Two-Stream Network Fusion for Video Action Recognition

Convolutional Two-Stream Network Fusion for Video Action Recognition

Christoph Feichtenhofer 676 Dec 31, 2022
Demonstrates iterative FGSM on Apple's NeuralHash model.

apple-neuralhash-attack Demonstrates iterative FGSM on Apple's NeuralHash model. TL;DR: It is possible to apply noise to CSAM images and make them loo

Lim Swee Kiat 11 Jun 23, 2022
An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

An efficient 3D semantic segmentation framework for Urban-scale point clouds like SensatUrban, Campus3D, etc.

Zou 33 Jan 03, 2023
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation".

I2V-GAN This repository is the official Pytorch implementation for ACMMM2021 paper "I2V-GAN: Unpaired Infrared-to-Visible Video Translation". Traffic

69 Dec 31, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022