Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

Overview

mmc

installation

git clone https://github.com/dmarx/Multi-Modal-Comparators
cd 'Multi-Modal-Comparators'
pip install poetry
poetry build
pip install dist/mmc*.whl

# optional final step:
#poe napm_installs
python src/mmc/napm_installs/__init__.py

To see which models are immediately available, run:

python -m mmc.loaders

That optional poe napm_installs step

For the most convenient experience, it is recommended that you perform the final poe napm_installs step. Omitting this step will make your one-time setup faster, but will make certain use cases more complex.

If you did not perform the optional poe napm_installs step, you likely received several warnings about models whose loaders could not be registered. These are models whose codebases depend on python code which is not trivially installable. You will still have access to all of the models supported by the library as if you had run the last step, but their loaders will not be queryable from the registry (see below) and will need to be loaded via the appropriate mmc.loader directly, which may be non-trivial to identify without the ability to query it from mmc's registry.

As a concrete example, if the napm step is skipped, the model [cloob - corwsonkb - cloob_laion_400m_vit_b_16_32_epochs] will not appear in the list of registered loaders, but can still be loaded like this:

from mmc.loaders import KatCloobLoader

model = KatCloobLoader(id='cloob_laion_400m_vit_b_16_32_epochs').load()

Invoking the load() method on an unregistered loader will invoke napm to prepare any uninstallable dependencies required to load the model. Next time you run python -m mmc.loaders, the CLOOB loader will show as registered and spinning up the registry will longer emit a warning for that model.

Usage

TLDR

# spin up the registry
from mmc import loaders

from mmc.mock.openai import MockOpenaiClip
from mmc.registry import REGISTRY

cloob_query = {architecture='cloob'}
cloob_loaders = REGISTRY.find(**cloob_query)

# loader repl prints attributes for uniquely querying
print(cloob_loaders)

# loader returns a perceptor whose API is standardized across mmc
cloob_model = cloob_loaders[0].load()

# wrapper classes are provided for mocking popular implementations
# to facilitate drop-in compatibility with existing code
drop_in_replacement__cloob_model = MockOpenaiClip(cloob_model)

Querying the Model Registry

Spin up the model registry by importing the loaders module:

from mmc import loaders

To see which models are available:

from mmc.registry import REGISTRY

for loader in REGISTRY.find():
    print(loader)

You can constrain the result set by querying the registry for specific metadata attributes

# all CLIP models
clip_loaders = REGISTRY.find(architecture='clip')

# CLIP models published by openai
openai_clip_loaders = REGISTRY.find(architecture='clip', publisher='openai')

# All models published by MLFoundations (openCLIP)
mlf_loaders = REGISTRY.find(publisher='mlfoundations)'

# A specific model
rn50_loader = REGISTRY.find(architecture='clip', publisher='openai', id='RN50')
# NB: there may be multiple models matching a particular "id". the 'id' field
# only needs to be unique for a given architecture-publisher pair.

All pretrained checkpoints are uniquely identifiable by a combination of architecture, publisher, and id.

The above queries return lists of loader objects. If model artifacts (checkpoints, config) need to be downloaded, they will only be downloaded after the load() method on the loader is invoked.

loaders = REGISTRY.find(...)
loader = loaders[0] # just picking an arbitrary return value here, remember: loaders is a *list* of loaders
model = loader.load()

The load() method returns an instance of an mmc.MultiModalComparator. The MultiModalComparator class is a modality-agnostic abstraction. I'll get to the ins and outs of that another time.

API Mocking

You want something you can just drop into your code and it'll work. We got you. This library provides wrapper classes to mock the APIs of commonly used CLIP implementations. To wrap a MultiModalComparator so it can be used as a drop-in replacement with code compatible with OpenAI's CLIP:

from mmc.mock.openai import MockOpenaiClip

my_model = my_model_loader.load()
model = MockOpenaiClip(my_model)

MultiMMC: Multi-Perceptor Implementation

The MultiMMC class can be used to run inference against multiple mmc models in parallel. This form of ensemble is sometimes referred to as a "multi-perceptor".

To ensure that all models loaded into the MultiMMC are compatible, the MultiMMC instance is initialized by specifying the modalities it supports. We'll discuss modality objects in a bit.

from mmc.multimmc import MultiMMC
from mmc.modalities import TEXT, IMAGE

perceptor = MultiMMC(TEXT, IMAGE)

To load and use a model:

perceptor.load_model(
    architecture='clip', 
    publisher='openai', 
    id='RN50',
)

score = perceptor.compare(
    image=PIL.Image.open(...), 
    text=text_pos),
)

Additional models can be added to the ensemble via the load_model() method.

The MultiMMC does not support API mocking because of its reliance on the compare method.

Available Pre-trained Models

Some model comparisons here

# [<architecture> - <publisher> - <id>]
[clip - openai - RN50]
[clip - openai - RN101]
[clip - openai - RN50x4]
[clip - openai - RN50x16]
[clip - openai - RN50x64]
[clip - openai - ViT-B/32]
[clip - openai - ViT-B/16]
[clip - openai - ViT-L/14]
[clip - openai - ViT-L/[email protected]]
[clip - mlfoundations - RN50--openai]
[clip - mlfoundations - RN50--yfcc15m]
[clip - mlfoundations - RN50--cc12m]
[clip - mlfoundations - RN50-quickgelu--openai]
[clip - mlfoundations - RN50-quickgelu--yfcc15m]
[clip - mlfoundations - RN50-quickgelu--cc12m]
[clip - mlfoundations - RN101--openai]
[clip - mlfoundations - RN101--yfcc15m]
[clip - mlfoundations - RN101-quickgelu--openai]
[clip - mlfoundations - RN101-quickgelu--yfcc15m]
[clip - mlfoundations - RN50x4--openai]
[clip - mlfoundations - RN50x16--openai]
[clip - mlfoundations - ViT-B-32--openai]
[clip - mlfoundations - ViT-B-32--laion400m_e31]
[clip - mlfoundations - ViT-B-32--laion400m_e32]
[clip - mlfoundations - ViT-B-32--laion400m_avg]
[clip - mlfoundations - ViT-B-32-quickgelu--openai]
[clip - mlfoundations - ViT-B-32-quickgelu--laion400m_e31]
[clip - mlfoundations - ViT-B-32-quickgelu--laion400m_e32]
[clip - mlfoundations - ViT-B-32-quickgelu--laion400m_avg]
[clip - mlfoundations - ViT-B-16--openai]
[clip - mlfoundations - ViT-L-14--openai]
[clip - sbert - ViT-B-32-multilingual-v1]
[clip - sajjjadayobi - clipfa]

# The following models depend on napm for setup
[clip - navervision - kelip_ViT-B/32]
[cloob - crowsonkb - cloob_laion_400m_vit_b_16_16_epochs]
[cloob - crowsonkb - cloob_laion_400m_vit_b_16_32_epochs]
[clip - facebookresearch - clip_small_25ep]
[clip - facebookresearch - clip_base_25ep]
[clip - facebookresearch - clip_large_25ep]
[slip - facebookresearch - slip_small_25ep]
[slip - facebookresearch - slip_small_50ep]
[slip - facebookresearch - slip_small_100ep]
[slip - facebookresearch - slip_base_25ep]
[slip - facebookresearch - slip_base_50ep]
[slip - facebookresearch - slip_base_100ep]
[slip - facebookresearch - slip_large_25ep]
[slip - facebookresearch - slip_large_50ep]
[slip - facebookresearch - slip_large_100ep]
[simclr - facebookresearch - simclr_small_25ep]
[simclr - facebookresearch - simclr_base_25ep]
[simclr - facebookresearch - simclr_large_25ep]
[clip - facebookresearch - clip_base_cc3m_40ep]
[clip - facebookresearch - clip_base_cc12m_35ep]
[slip - facebookresearch - slip_base_cc3m_40ep]
[slip - facebookresearch - slip_base_cc12m_35ep]

VRAM Cost

The following is an estimate of the amount of space the loaded model occupies in memory:

publisher architecture model_name vram_mb
0 openai clip RN50 358
1 openai clip RN101 294
2 openai clip RN50x4 424
3 openai clip RN50x16 660
4 openai clip RN50x64 1350
5 openai clip ViT-B/32 368
6 openai clip ViT-B/16 348
7 openai clip ViT-L/14 908
8 openai clip ViT-L/[email protected] 908
9 mlfoundations clip RN50--openai 402
10 mlfoundations clip RN50--yfcc15m 402
11 mlfoundations clip RN50--cc12m 402
12 mlfoundations clip RN50-quickgelu--openai 402
13 mlfoundations clip RN50-quickgelu--yfcc15m 402
14 mlfoundations clip RN50-quickgelu--cc12m 402
15 mlfoundations clip RN101--openai 476
16 mlfoundations clip RN101--yfcc15m 476
17 mlfoundations clip RN101-quickgelu--openai 476
18 mlfoundations clip RN101-quickgelu--yfcc15m 476
19 mlfoundations clip RN50x4--openai 732
20 mlfoundations clip RN50x16--openai 1200
21 mlfoundations clip ViT-B-32--openai 634
22 mlfoundations clip ViT-B-32--laion400m_e31 634
23 mlfoundations clip ViT-B-32--laion400m_e32 634
24 mlfoundations clip ViT-B-32--laion400m_avg 634
25 mlfoundations clip ViT-B-32-quickgelu--openai 634
26 mlfoundations clip ViT-B-32-quickgelu--laion400m_e31 634
27 mlfoundations clip ViT-B-32-quickgelu--laion400m_e32 634
28 mlfoundations clip ViT-B-32-quickgelu--laion400m_avg 634
29 mlfoundations clip ViT-B-16--openai 634
30 mlfoundations clip ViT-L-14--openai 1688
32 sajjjadayobi clip clipfa 866
33 crowsonkb cloob cloob_laion_400m_vit_b_16_16_epochs 610
34 crowsonkb cloob cloob_laion_400m_vit_b_16_32_epochs 610
36 facebookresearch slip slip_small_25ep 728
37 facebookresearch slip slip_small_50ep 650
38 facebookresearch slip slip_small_100ep 650
39 facebookresearch slip slip_base_25ep 714
40 facebookresearch slip slip_base_50ep 714
41 facebookresearch slip slip_base_100ep 714
42 facebookresearch slip slip_large_25ep 1534
43 facebookresearch slip slip_large_50ep 1522
44 facebookresearch slip slip_large_100ep 1522
45 facebookresearch slip slip_base_cc3m_40ep 714
46 facebookresearch slip slip_base_cc12m_35ep 714

Contributing

Suggest a pre-trained model

If you would like to suggest a pre-trained model for future addition, you can add a comment to this issue

Add a pre-trained model

  1. Create a loader class that encapsulates the logic for importing the model, loading weights, preprocessing inputs, and performing projections.
  2. At the bottom of the file defining the loader class should be a code snippet that adds each respective checkpoint's loader to the registry.
  3. Add an import for the new file to mmc/loaders/__init__.py. The imports in this file are the reason import mmc.loaders "spins up" the registry.
  4. If the codebase on which the model depends can be installed, update pytproject.toml to install it.
  5. Otherwise, add napm preparation at the top of the loaders load method (see cloob or kelip for examples), and also add napm setup to mmc/napm_installs/__init__.py
  6. Add a test case to tests/test_mmc_loaders.py
  7. Add a test script for the loader (see test_mmc_katcloob as an example)
Owner
David Marx
Engineer / Machine Learning Researcher interested in deep learning, probabilistic ML, generative models, multi-modal SSL, visual understanding, geometric
David Marx
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
PyTorch reimplementation of Diffusion Models

PyTorch pretrained Diffusion Models A PyTorch reimplementation of Denoising Diffusion Probabilistic Models with checkpoints converted from the author'

Patrick Esser 265 Jan 01, 2023
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Advanced Signal Processing Notebooks and Tutorials

Advanced Digital Signal Processing Notebooks and Tutorials Prof. Dr. -Ing. Gerald Schuller Jupyter Notebooks and Videos: Renato Profeta Applied Media

Guitars.AI 115 Dec 13, 2022
AoT is a system for automatically generating off-target test harness by using build information.

AoT: Auto off-Target Automatically generating off-target test harness by using build information. Brought to you by the Mobile Security Team at Samsun

Samsung 10 Oct 19, 2022
A visualisation tool for Deep Reinforcement Learning

DRLVIS - Visualising Deep Reinforcement Learning Created by Marios Sirtmatsis with the support of Alex Bäuerle. DRLVis is an application used for visu

Marios Sirtmatsis 1 Nov 04, 2021
A Python library that enables ML teams to share, load, and transform data in a collaborative, flexible, and efficient way :chestnut:

Squirrel Core Share, load, and transform data in a collaborative, flexible, and efficient way What is Squirrel? Squirrel is a Python library that enab

Merantix Momentum 249 Dec 07, 2022
official implemntation for "Contrastive Learning with Stronger Augmentations"

CLSA CLSA is a self-supervised learning methods which focused on the pattern learning from strong augmentations. Copyright (C) 2020 Xiao Wang, Guo-Jun

Lab for MAchine Perception and LEarning (MAPLE) 47 Nov 29, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022
The second project in Python course on FCC

Assignment Write a function named add_time that takes in two required parameters and one optional parameter: a start time in the 12-hour clock format

Denise T 1 Dec 13, 2021
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
HeartRate detector with ArduinoandPython - Use Arduino and Python create a heartrate detector.

Syllabus of Contents Syllabus of Contents Introduction Of Project Features Develop With Python code introduction Installation License Developer Contac

1 Jan 05, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023