Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

Overview

mmc

installation

git clone https://github.com/dmarx/Multi-Modal-Comparators
cd 'Multi-Modal-Comparators'
pip install poetry
poetry build
pip install dist/mmc*.whl

# optional final step:
#poe napm_installs
python src/mmc/napm_installs/__init__.py

To see which models are immediately available, run:

python -m mmc.loaders

That optional poe napm_installs step

For the most convenient experience, it is recommended that you perform the final poe napm_installs step. Omitting this step will make your one-time setup faster, but will make certain use cases more complex.

If you did not perform the optional poe napm_installs step, you likely received several warnings about models whose loaders could not be registered. These are models whose codebases depend on python code which is not trivially installable. You will still have access to all of the models supported by the library as if you had run the last step, but their loaders will not be queryable from the registry (see below) and will need to be loaded via the appropriate mmc.loader directly, which may be non-trivial to identify without the ability to query it from mmc's registry.

As a concrete example, if the napm step is skipped, the model [cloob - corwsonkb - cloob_laion_400m_vit_b_16_32_epochs] will not appear in the list of registered loaders, but can still be loaded like this:

from mmc.loaders import KatCloobLoader

model = KatCloobLoader(id='cloob_laion_400m_vit_b_16_32_epochs').load()

Invoking the load() method on an unregistered loader will invoke napm to prepare any uninstallable dependencies required to load the model. Next time you run python -m mmc.loaders, the CLOOB loader will show as registered and spinning up the registry will longer emit a warning for that model.

Usage

TLDR

# spin up the registry
from mmc import loaders

from mmc.mock.openai import MockOpenaiClip
from mmc.registry import REGISTRY

cloob_query = {architecture='cloob'}
cloob_loaders = REGISTRY.find(**cloob_query)

# loader repl prints attributes for uniquely querying
print(cloob_loaders)

# loader returns a perceptor whose API is standardized across mmc
cloob_model = cloob_loaders[0].load()

# wrapper classes are provided for mocking popular implementations
# to facilitate drop-in compatibility with existing code
drop_in_replacement__cloob_model = MockOpenaiClip(cloob_model)

Querying the Model Registry

Spin up the model registry by importing the loaders module:

from mmc import loaders

To see which models are available:

from mmc.registry import REGISTRY

for loader in REGISTRY.find():
    print(loader)

You can constrain the result set by querying the registry for specific metadata attributes

# all CLIP models
clip_loaders = REGISTRY.find(architecture='clip')

# CLIP models published by openai
openai_clip_loaders = REGISTRY.find(architecture='clip', publisher='openai')

# All models published by MLFoundations (openCLIP)
mlf_loaders = REGISTRY.find(publisher='mlfoundations)'

# A specific model
rn50_loader = REGISTRY.find(architecture='clip', publisher='openai', id='RN50')
# NB: there may be multiple models matching a particular "id". the 'id' field
# only needs to be unique for a given architecture-publisher pair.

All pretrained checkpoints are uniquely identifiable by a combination of architecture, publisher, and id.

The above queries return lists of loader objects. If model artifacts (checkpoints, config) need to be downloaded, they will only be downloaded after the load() method on the loader is invoked.

loaders = REGISTRY.find(...)
loader = loaders[0] # just picking an arbitrary return value here, remember: loaders is a *list* of loaders
model = loader.load()

The load() method returns an instance of an mmc.MultiModalComparator. The MultiModalComparator class is a modality-agnostic abstraction. I'll get to the ins and outs of that another time.

API Mocking

You want something you can just drop into your code and it'll work. We got you. This library provides wrapper classes to mock the APIs of commonly used CLIP implementations. To wrap a MultiModalComparator so it can be used as a drop-in replacement with code compatible with OpenAI's CLIP:

from mmc.mock.openai import MockOpenaiClip

my_model = my_model_loader.load()
model = MockOpenaiClip(my_model)

MultiMMC: Multi-Perceptor Implementation

The MultiMMC class can be used to run inference against multiple mmc models in parallel. This form of ensemble is sometimes referred to as a "multi-perceptor".

To ensure that all models loaded into the MultiMMC are compatible, the MultiMMC instance is initialized by specifying the modalities it supports. We'll discuss modality objects in a bit.

from mmc.multimmc import MultiMMC
from mmc.modalities import TEXT, IMAGE

perceptor = MultiMMC(TEXT, IMAGE)

To load and use a model:

perceptor.load_model(
    architecture='clip', 
    publisher='openai', 
    id='RN50',
)

score = perceptor.compare(
    image=PIL.Image.open(...), 
    text=text_pos),
)

Additional models can be added to the ensemble via the load_model() method.

The MultiMMC does not support API mocking because of its reliance on the compare method.

Available Pre-trained Models

Some model comparisons here

# [<architecture> - <publisher> - <id>]
[clip - openai - RN50]
[clip - openai - RN101]
[clip - openai - RN50x4]
[clip - openai - RN50x16]
[clip - openai - RN50x64]
[clip - openai - ViT-B/32]
[clip - openai - ViT-B/16]
[clip - openai - ViT-L/14]
[clip - openai - ViT-L/[email protected]]
[clip - mlfoundations - RN50--openai]
[clip - mlfoundations - RN50--yfcc15m]
[clip - mlfoundations - RN50--cc12m]
[clip - mlfoundations - RN50-quickgelu--openai]
[clip - mlfoundations - RN50-quickgelu--yfcc15m]
[clip - mlfoundations - RN50-quickgelu--cc12m]
[clip - mlfoundations - RN101--openai]
[clip - mlfoundations - RN101--yfcc15m]
[clip - mlfoundations - RN101-quickgelu--openai]
[clip - mlfoundations - RN101-quickgelu--yfcc15m]
[clip - mlfoundations - RN50x4--openai]
[clip - mlfoundations - RN50x16--openai]
[clip - mlfoundations - ViT-B-32--openai]
[clip - mlfoundations - ViT-B-32--laion400m_e31]
[clip - mlfoundations - ViT-B-32--laion400m_e32]
[clip - mlfoundations - ViT-B-32--laion400m_avg]
[clip - mlfoundations - ViT-B-32-quickgelu--openai]
[clip - mlfoundations - ViT-B-32-quickgelu--laion400m_e31]
[clip - mlfoundations - ViT-B-32-quickgelu--laion400m_e32]
[clip - mlfoundations - ViT-B-32-quickgelu--laion400m_avg]
[clip - mlfoundations - ViT-B-16--openai]
[clip - mlfoundations - ViT-L-14--openai]
[clip - sbert - ViT-B-32-multilingual-v1]
[clip - sajjjadayobi - clipfa]

# The following models depend on napm for setup
[clip - navervision - kelip_ViT-B/32]
[cloob - crowsonkb - cloob_laion_400m_vit_b_16_16_epochs]
[cloob - crowsonkb - cloob_laion_400m_vit_b_16_32_epochs]
[clip - facebookresearch - clip_small_25ep]
[clip - facebookresearch - clip_base_25ep]
[clip - facebookresearch - clip_large_25ep]
[slip - facebookresearch - slip_small_25ep]
[slip - facebookresearch - slip_small_50ep]
[slip - facebookresearch - slip_small_100ep]
[slip - facebookresearch - slip_base_25ep]
[slip - facebookresearch - slip_base_50ep]
[slip - facebookresearch - slip_base_100ep]
[slip - facebookresearch - slip_large_25ep]
[slip - facebookresearch - slip_large_50ep]
[slip - facebookresearch - slip_large_100ep]
[simclr - facebookresearch - simclr_small_25ep]
[simclr - facebookresearch - simclr_base_25ep]
[simclr - facebookresearch - simclr_large_25ep]
[clip - facebookresearch - clip_base_cc3m_40ep]
[clip - facebookresearch - clip_base_cc12m_35ep]
[slip - facebookresearch - slip_base_cc3m_40ep]
[slip - facebookresearch - slip_base_cc12m_35ep]

VRAM Cost

The following is an estimate of the amount of space the loaded model occupies in memory:

publisher architecture model_name vram_mb
0 openai clip RN50 358
1 openai clip RN101 294
2 openai clip RN50x4 424
3 openai clip RN50x16 660
4 openai clip RN50x64 1350
5 openai clip ViT-B/32 368
6 openai clip ViT-B/16 348
7 openai clip ViT-L/14 908
8 openai clip ViT-L/[email protected] 908
9 mlfoundations clip RN50--openai 402
10 mlfoundations clip RN50--yfcc15m 402
11 mlfoundations clip RN50--cc12m 402
12 mlfoundations clip RN50-quickgelu--openai 402
13 mlfoundations clip RN50-quickgelu--yfcc15m 402
14 mlfoundations clip RN50-quickgelu--cc12m 402
15 mlfoundations clip RN101--openai 476
16 mlfoundations clip RN101--yfcc15m 476
17 mlfoundations clip RN101-quickgelu--openai 476
18 mlfoundations clip RN101-quickgelu--yfcc15m 476
19 mlfoundations clip RN50x4--openai 732
20 mlfoundations clip RN50x16--openai 1200
21 mlfoundations clip ViT-B-32--openai 634
22 mlfoundations clip ViT-B-32--laion400m_e31 634
23 mlfoundations clip ViT-B-32--laion400m_e32 634
24 mlfoundations clip ViT-B-32--laion400m_avg 634
25 mlfoundations clip ViT-B-32-quickgelu--openai 634
26 mlfoundations clip ViT-B-32-quickgelu--laion400m_e31 634
27 mlfoundations clip ViT-B-32-quickgelu--laion400m_e32 634
28 mlfoundations clip ViT-B-32-quickgelu--laion400m_avg 634
29 mlfoundations clip ViT-B-16--openai 634
30 mlfoundations clip ViT-L-14--openai 1688
32 sajjjadayobi clip clipfa 866
33 crowsonkb cloob cloob_laion_400m_vit_b_16_16_epochs 610
34 crowsonkb cloob cloob_laion_400m_vit_b_16_32_epochs 610
36 facebookresearch slip slip_small_25ep 728
37 facebookresearch slip slip_small_50ep 650
38 facebookresearch slip slip_small_100ep 650
39 facebookresearch slip slip_base_25ep 714
40 facebookresearch slip slip_base_50ep 714
41 facebookresearch slip slip_base_100ep 714
42 facebookresearch slip slip_large_25ep 1534
43 facebookresearch slip slip_large_50ep 1522
44 facebookresearch slip slip_large_100ep 1522
45 facebookresearch slip slip_base_cc3m_40ep 714
46 facebookresearch slip slip_base_cc12m_35ep 714

Contributing

Suggest a pre-trained model

If you would like to suggest a pre-trained model for future addition, you can add a comment to this issue

Add a pre-trained model

  1. Create a loader class that encapsulates the logic for importing the model, loading weights, preprocessing inputs, and performing projections.
  2. At the bottom of the file defining the loader class should be a code snippet that adds each respective checkpoint's loader to the registry.
  3. Add an import for the new file to mmc/loaders/__init__.py. The imports in this file are the reason import mmc.loaders "spins up" the registry.
  4. If the codebase on which the model depends can be installed, update pytproject.toml to install it.
  5. Otherwise, add napm preparation at the top of the loaders load method (see cloob or kelip for examples), and also add napm setup to mmc/napm_installs/__init__.py
  6. Add a test case to tests/test_mmc_loaders.py
  7. Add a test script for the loader (see test_mmc_katcloob as an example)
Owner
David Marx
Engineer / Machine Learning Researcher interested in deep learning, probabilistic ML, generative models, multi-modal SSL, visual understanding, geometric
David Marx
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Python Implementation of algorithms in Graph Mining, e.g., Recommendation, Collaborative Filtering, Community Detection, Spectral Clustering, Modularity Maximization, co-authorship networks.

Graph Mining Author: Jiayi Chen Time: April 2021 Implemented Algorithms: Network: Scrabing Data, Network Construbtion and Network Measurement (e.g., P

Jiayi Chen 3 Mar 03, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
A PyTorch implementation of SIN: Superpixel Interpolation Network

SIN: Superpixel Interpolation Network This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

6 Sep 28, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
code for ICCV 2021 paper 'Generalized Source-free Domain Adaptation'

G-SFDA Code (based on pytorch 1.3) for our ICCV 2021 paper 'Generalized Source-free Domain Adaptation'. [project] [paper]. Dataset preparing Download

Shiqi Yang 84 Dec 26, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 04, 2023
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
An open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning.

NNI Doc | 简体中文 NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate Feature Engineering, Neural Architecture

Microsoft 12.4k Dec 31, 2022
PICARD - Parsing Incrementally for Constrained Auto-Regressive Decoding from Language Models

This is the official implementation of the following paper: Torsten Scholak, Nathan Schucher, Dzmitry Bahdanau. PICARD - Parsing Incrementally for Con

ElementAI 217 Jan 01, 2023
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022