SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

Overview

SlideGraph+: Whole Slide Image Level Graphs to Predict HER2 Status in Breast Cancer

A novel graph neural network (GNN) based model (termed SlideGraph+) to predict HER2 status directly from whole-slide images of routine Haematoxylin and Eosin (H&E) slides. This pipeline generates node-level and WSI-level predictions by using a graph representation to capture the biological geometric structure of the cellular architecture at the entire WSI level. A pre-processing function is used to do adaptive spatial agglomerative clustering to group spatially neighbouring regions with high degree of feature similarity and construct a WSI-level graph based on clusters.

Data

The repository can be used for constructing WSI-level graphs, training SlideGraph and predicting HER2 status on WSI-level graphs. The training data used in this study was downloaded from TCGA using https://portal.gdc.cancer.gov/projects/TCGA-BRCA.

Workflow of predicting HER2 status from H&E images

workflow1

GNN network architecture

GCN_architecture5

Environment

Please refer to requirements.txt

Repository Structure

Below are the main executable scripts in the repository:

features_to_graph.py: Construct WSI-level graph

platt.py: Normalise classifier output scores to a probability value

GNN_pr.py: Graph neural network architecture

train.py: Main training and inference script

Training the classification model

Data format

For training, each WSI has to have a WSI-level graph. In order to do that, it is required to generate x,y coordinates, feature vectors for local regions in the WSIs. x,y coordinates can be cental points of patches, centroid of nuclei and so on. Feature varies. It can be nuclear composition features (e.g.,counts of different types of nuclei in the patch), morphological features, receptor expression features, deep features (or neuralfeature embdeddings from a pre-trained neural network) and so on.

Each WSI should be fitted with one npz file which contains three arrays: x_coordinate, y_coordinate and corresponding region-level feature vector. Please refer to feature.npz in the example folder.

Graph construction

After npz files are ready, run features_to_graph.py to group spatially neighbouring regions with high degree of feature similarity and construct a graph based on clusters for each WSI.

  • Set path to the feature directories (feature_path)
  • Set path where graphs will be saved (output_path)
  • Modify hyperparameters, including similarity parameters (lambda_d, lambda_f), hierachical clustering distance threshold (lamda_h) and node connection distance threshold (distance_thres)

Training

After getting graphs of all WSIs,

  • Set path to the graph directories (bdir) in train.py
  • Set path to the clinical data (clin_path) in train.py
  • Modify hyperparameters, including learning_rate, weight_decay in train.py

Train the classification model and do 5-fold stratified cross validation using

python train.py

In each fold, top 10 best models (on validation dataset) and the model from the last epoch are tested on the testing dataset. Averaged classification performance among 5 folds are presented in the end.

Heatmap of node-level prediction scores

heatmap_final

Heatmaps of node-level prediction scores and zoomed-in regions which have different levels of HER2 prediction score. Boundary colour of each zoomed-in region represents its contribution to HER2 positivity (prediction score).

License

The source code SlideGraph as hosted on GitHub is released under the GNU General Public License (Version 3).

The full text of the licence is included in LICENSE.md.

FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

GNN4Traffic - This is the repository for the collection of Graph Neural Network for Traffic Forecasting

564 Jan 02, 2023
An open-source online reverse dictionary.

An open-source online reverse dictionary.

THUNLP 6.3k Jan 09, 2023
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Implementation of paper "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement"

DCS-Net This is the implementation of "DCS-Net: Deep Complex Subtractive Neural Network for Monaural Speech Enhancement" Steps to run the model Edit V

Jack Walters 10 Apr 04, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021

SNN_Calibration Pytorch Implementation of Spiking Neural Networks Calibration, ICML 2021 Feature Comparison of SNN calibration: Features SNN Direct Tr

Yuhang Li 60 Dec 27, 2022
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
People log into different sites every day to get information and browse through these sites one by one

HyperLink People log into different sites every day to get information and browse through these sites one by one. And they are exposed to advertisemen

0 Feb 17, 2022
Modifications of the official PyTorch implementation of StyleGAN3. Let's easily generate images and videos with StyleGAN2/2-ADA/3!

Alias-Free Generative Adversarial Networks (StyleGAN3) Official PyTorch implementation of the NeurIPS 2021 paper Alias-Free Generative Adversarial Net

Diego Porres 185 Dec 24, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Tensorboard for pytorch (and chainer, mxnet, numpy, ...)

tensorboardX Write TensorBoard events with simple function call. The current release (v2.3) is tested on anaconda3, with PyTorch 1.8.1 / torchvision 0

Tzu-Wei Huang 7.5k Dec 28, 2022