Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Overview

Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du viel lernen wirst und dabei auch Spaß hast.

In dieser Hausaufgabe wirst du eine Webseite zu deinem Lieblingscharakter aus Filmen oder Büchern erstellen. Hier kannst du zwei Beispiele betrachten: Beispiel 1 und Beispiel 2. Du wirst hier den Github Flow üben, aber das wirst du dann in den Aufgaben erkennen.

Um die Aufgabe zu starten, folge einfach folgenden Schritten:

  • Nutze dieses Repository als Vorlage für ein neues Repository und klicke auf „Use this template“, um das selbe Repository in deinen Repositories zu erstellen. Gib dem Repository beim Erstellen den Namen „<dein github name>.github.io“. Wenn dein Username zum Beispiel sanjsp ist, sollte das Repository sanjsp.github.io heißen
  • Gib dem neu erstellten Repository einen Stern. Falls du keinen Stern geben kannst, solltest du überprüfen, ob deine mit deinem GitHub Account verknüpfte Email Adresse verifiziert ist. Das kannst du bei den Einstellungen nachschauen.
  • Clone das Repository auf deinen Computer. Dafür gehst du oben in der Leiste auf Clone or Download und kopierst den Link des Repositories. Dann führst du in der Git Bash git clone (URL des Repositories) aus. Meine Eingabe sähe wie folgt aus: git clone https://github.com/SanJSp/sanjsp.github.io.git
  • Öffne die Webseite, die aus den Inhalten des Repositories generiert wird. Dafür gehst du im Browser auf \<dein github name\>.github.io. Bei mir wäre das sanjsp.github.io. Dort wirst du momentan einen Error 404 vorfinden. Allerdings kannst du nach dem Lösen jeder Aufgabe hier überprüfen, ob sich etwas geändert hat.
  • Mit der Zeit werden wir, in Form eines Bots, in deinem Repository neue Issues hinzufügen. Insgesamt gibt es fünf Aufgaben in Form von fünf unterschiedlichen Issues. Wenn du ein Issue erfolgreich gelöst hast, wird der Bot in deinem Pull Request ein Passwort für das Quiz auf openHPI kommentieren. Das sollst du dann für die entsprechende Aufgabe eingeben. Bearbeite nun die Issues und folge den Schritten, die in den Issues angegeben sind. Es kann manchmal ein wenig dauern (max. 5 Minuten), bis die Issues erstellt werden.

Die Webseite verändert sich immer, wenn auf dem master ein neuer Commit stattgefunden hat. Wenn du die Veränderungen anschauen möchtest, die du auf deinem feature-Branch erstellt hast, schau dir die index.md Datei in deinem Repository auf GitHub an. Bedenke, dass du auch auf GitHub den Branch wechseln kannst. Um deine Änderungen zu sehen musst du beim Betrachten der Index.md oben links deinen Branch auswählen. Nun kannst du sehen, was beim Formatieren der Inhalte nicht ganz funktioniert hat.

PyExplainer: A Local Rule-Based Model-Agnostic Technique (Explainable AI)

PyExplainer PyExplainer is a local rule-based model-agnostic technique for generating explanations (i.e., why a commit is predicted as defective) of J

AI Wizards for Software Management (AWSM) Research Group 14 Nov 13, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Apache MXNet is a deep learning framework designed for both efficiency and flexibility. It allows you to m

The Apache Software Foundation 20.2k Jan 05, 2023
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Code for the Active Speakers in Context Paper (CVPR2020)

Active Speakers in Context This repo contains the official code and models for the "Active Speakers in Context" CVPR 2020 paper. Before Training The c

43 Oct 14, 2022
This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong Poisons

Adversarial poison generation and evaluation. This framework implements the data poisoning method found in the paper Adversarial Examples Make Strong

31 Nov 01, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Discover hidden deepweb pages

DeepWeb Scapper Att: Demo version An simple script to scrappe deepweb to find pages. Will return if any of those exists and will save on a file. You s

Héber Júlio 77 Oct 02, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Accelerated SMPL operation, commonly used in generate 3D human mesh, STAR included.

SMPL2 An enchanced and accelerated SMPL operation which commonly used in 3D human mesh generation. It takes a poses, shapes, cam_trans as inputs, outp

JinTian 20 Oct 17, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
The implementation of the algorithm in the paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020.

DS3L This is the code for paper "Safe Deep Semi-Supervised Learning for Unseen-Class Unlabeled Data" published in ICML 2020. Setups The code is implem

Guolz 36 Oct 19, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
COD-Rank-Localize-and-Segment (CVPR2021)

COD-Rank-Localize-and-Segment (CVPR2021) Simultaneously Localize, Segment and Rank the Camouflaged Objects Full camouflage fixation training dataset i

JingZhang 52 Dec 20, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
Pytorch implementation for Semantic Segmentation/Scene Parsing on MIT ADE20K dataset

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch implementation of semantic segmentation models on MIT ADE20K scene parsing da

MIT CSAIL Computer Vision 4.5k Jan 08, 2023
It helps user to learn Pick-up lines and share if he has a better one

Pick-up-Lines-Generator(Open Source) It helps user to learn Pick-up lines Share and Add one or many to the DataBase Unique SQLite DataBase AI Undercon

knock_nott 0 May 04, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022