Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

Overview

acLSTM_motion

This folder contains an implementation of acRNN for the CMU motion database written in Pytorch.

See the following links for more background:

Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

CMU Motion Capture Database

Prequisite

You need to install python3.6 (python 2.7 should also be fine) and pytorch. You will also need to have transforms3d, which can be installed by using this command:

pip install transforms3d

Data Preparation

To begin, you need to download the motion data form the CMU motion database in the form of bvh files. I have already put some sample bvh files including "salsa", "martial" and "indian" in the "train_data_bvh" folder.

Then to transform the bvh files into training data, go to the folder "code" and run generate_training_data.py. You will need to change the directory of the source motion folder and the target motioin folder on the last line. If you don't change anything, this code will create a directory "../train_data_xyz/indian" and generate the training data for indian dances in this folder.

Training

After generating the training data, you can start to train the network by running the pytorch_train_aclstm.py. Again, you need to change some directories on the last few lines in the code, including "dances_folder" which is the location of the training data, "write_weight_folder" which is the location to save the weights of the network during training, "write_bvh_motion_folder" which is the location to save the temporate output of the network and the groundtruth motion sequences in the form of bvh, and "read_weight_path" which is the path of the network weights if you want to train the network from some pretrained weights other than from begining in which case it is set as "". If you don't change anything, this code will train the network upon the indian dance data and create two folders ("../train_weight_aclstm_indian/" and "../train_tmp_bvh_aclstm_indian/") to save the weights and temporate outputs.

Testing

When the training is done, you can use pytorch_test_synthesize_motion.py to synthesize motions. You will need to change the last few lines to set the "read_weight_path" which is the location of the weights of the network you want to test, "write_bvh_motion_folder" which is the location of the output motions, "dances_folder" is the where the code randomly picked up a short initial sequence from. You may also want to set the "batch" to determine how many motion clips you want to generate, the "generate_frames_numbers" to determine the length of the motion clips et al.. If you don't change anything, the code will read the weights from the 86000th iteration and generate 5 indian dances in the form of bvh to "../test_bvh_aclstm_indian/".

The output motions from the network usually have artifacts of sliding feet and sometimes underneath-ground feet. If you are not satisfied with these details, you can use fix_feet.py to solve it. The algorithm in this code is very simple and you are welcome to write a more complex version that can preserve the kinematics of the human body and share it to us.

For rendering the bvh motion, you can use softwares like MotionBuilder, Maya, 3D max or most easily, use an online BVH renderer for example: http://lo-th.github.io/olympe/BVH_player.html

Enjoy!

Owner
Yi_Zhou
I am a PHD student at University of Southern California.
Yi_Zhou
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships.

feature-set-comp Compares various time-series feature sets on computational performance, within-set structure, and between-set relationships. Reposito

Trent Henderson 7 May 25, 2022
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Official implementation of our CVPR2021 paper "OTA: Optimal Transport Assignment for Object Detection" in Pytorch.

OTA: Optimal Transport Assignment for Object Detection This project provides an implementation for our CVPR2021 paper "OTA: Optimal Transport Assignme

217 Jan 03, 2023
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
MogFace: Towards a Deeper Appreciation on Face Detection

MogFace: Towards a Deeper Appreciation on Face Detection Introduction In this repo, we propose a promising face detector, termed as MogFace. Our MogFa

48 Dec 20, 2022
Official PyTorch Implementation of "AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecasting".

AgentFormer This repo contains the official implementation of our paper: AgentFormer: Agent-Aware Transformers for Socio-Temporal Multi-Agent Forecast

Ye Yuan 161 Dec 23, 2022
Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Official implementation of Influence-balanced Loss for Imbalanced Visual Classification in PyTorch.

Seulki Park 70 Jan 03, 2023
AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人

paddle-wechaty-Zodiac AI创造营 :Metaverse启动机之重构现世,结合PaddlePaddle 和 Wechaty 创造自己的聊天机器人 12星座若穿越科幻剧,会拥有什么超能力呢?快来迎接你的专属超能力吧! 现在很多年轻人都喜欢看科幻剧,像是复仇者系列,里面有很多英雄、超

105 Dec 22, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Rank 1st in the public leaderboard of ScanRefer (2021-03-18)

InstanceRefer InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring

63 Dec 07, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Multi-modal Vision Transformers Excel at Class-agnostic Object Detection

Muhammad Maaz 206 Jan 04, 2023
PyTorch implementation of Octave Convolution with pre-trained Oct-ResNet and Oct-MobileNet models

octconv.pytorch PyTorch implementation of Octave Convolution in Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octa

Duo Li 273 Dec 18, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Facebook Research 125 Dec 25, 2022
Reference models and tools for Cloud TPUs.

Cloud TPUs This repository is a collection of reference models and tools used with Cloud TPUs. The fastest way to get started training a model on a Cl

5k Jan 05, 2023