Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

Overview

acLSTM_motion

This folder contains an implementation of acRNN for the CMU motion database written in Pytorch.

See the following links for more background:

Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

CMU Motion Capture Database

Prequisite

You need to install python3.6 (python 2.7 should also be fine) and pytorch. You will also need to have transforms3d, which can be installed by using this command:

pip install transforms3d

Data Preparation

To begin, you need to download the motion data form the CMU motion database in the form of bvh files. I have already put some sample bvh files including "salsa", "martial" and "indian" in the "train_data_bvh" folder.

Then to transform the bvh files into training data, go to the folder "code" and run generate_training_data.py. You will need to change the directory of the source motion folder and the target motioin folder on the last line. If you don't change anything, this code will create a directory "../train_data_xyz/indian" and generate the training data for indian dances in this folder.

Training

After generating the training data, you can start to train the network by running the pytorch_train_aclstm.py. Again, you need to change some directories on the last few lines in the code, including "dances_folder" which is the location of the training data, "write_weight_folder" which is the location to save the weights of the network during training, "write_bvh_motion_folder" which is the location to save the temporate output of the network and the groundtruth motion sequences in the form of bvh, and "read_weight_path" which is the path of the network weights if you want to train the network from some pretrained weights other than from begining in which case it is set as "". If you don't change anything, this code will train the network upon the indian dance data and create two folders ("../train_weight_aclstm_indian/" and "../train_tmp_bvh_aclstm_indian/") to save the weights and temporate outputs.

Testing

When the training is done, you can use pytorch_test_synthesize_motion.py to synthesize motions. You will need to change the last few lines to set the "read_weight_path" which is the location of the weights of the network you want to test, "write_bvh_motion_folder" which is the location of the output motions, "dances_folder" is the where the code randomly picked up a short initial sequence from. You may also want to set the "batch" to determine how many motion clips you want to generate, the "generate_frames_numbers" to determine the length of the motion clips et al.. If you don't change anything, the code will read the weights from the 86000th iteration and generate 5 indian dances in the form of bvh to "../test_bvh_aclstm_indian/".

The output motions from the network usually have artifacts of sliding feet and sometimes underneath-ground feet. If you are not satisfied with these details, you can use fix_feet.py to solve it. The algorithm in this code is very simple and you are welcome to write a more complex version that can preserve the kinematics of the human body and share it to us.

For rendering the bvh motion, you can use softwares like MotionBuilder, Maya, 3D max or most easily, use an online BVH renderer for example: http://lo-th.github.io/olympe/BVH_player.html

Enjoy!

Owner
Yi_Zhou
I am a PHD student at University of Southern California.
Yi_Zhou
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614

AquaTimer - Programmable Timer for Aquariums based on ATtiny414/814/1614 AquaTimer is a programmable timer for 12V devices such as lighting, solenoid

Stefan Wagner 4 Jun 13, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Generative Flow Networks

Flow Network based Generative Models for Non-Iterative Diverse Candidate Generation Implementation for our paper, submitted to NeurIPS 2021 (also chec

Emmanuel Bengio 381 Jan 04, 2023
Character Grounding and Re-Identification in Story of Videos and Text Descriptions

Character in Story Identification Network (CiSIN) This project hosts the code for our paper. Youngjae Yu, Jongseok Kim, Heeseung Yun, Jiwan Chung and

8 Dec 09, 2022
BASH - Biomechanical Animated Skinned Human

We developed a method animating a statistical 3D human model for biomechanical analysis to increase accessibility for non-experts, like patients, athletes, or designers.

Machine Learning and Data Analytics Lab FAU 66 Nov 19, 2022
Unofficial implementation of PatchCore anomaly detection

PatchCore anomaly detection Unofficial implementation of PatchCore(new SOTA) anomaly detection model Original Paper : Towards Total Recall in Industri

Changwoo Ha 268 Dec 22, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks

Decoding the Protein-ligand Interactions Using Parallel Graph Neural Networks Requirements python 0.10+ rdkit 2020.03.3.0 biopython 1.78 openbabel 2.4

Neeraj Kumar 3 Nov 23, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction

DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction This is the implementation of DeepSTD in

5 Sep 26, 2022