Semi-supervised Implicit Scene Completion from Sparse LiDAR

Related tags

Deep LearningSISC
Overview

Semi-supervised Implicit Scene Completion from Sparse LiDAR

Paper

Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZHANG from Institute for AI Industry Research(AIR), Tsinghua University.

demo

For complete video, click HERE.

teaser

sup0

sup1

sup2

sup3

sup4

Introduction

Recent advances show that semi-supervised implicit representation learning can be achieved through physical constraints like Eikonal equations. However, this scheme has not yet been successfully used for LiDAR point cloud data, due to its spatially varying sparsity.

In this repository, we develop a novel formulation that conditions the semi-supervised implicit function on localized shape embeddings. It exploits the strong representation learning power of sparse convolutional networks to generate shape-aware dense feature volumes, while still allows semi-supervised signed distance function learning without knowing its exact values at free space. With extensive quantitative and qualitative results, we demonstrate intrinsic properties of this new learning system and its usefulness in real-world road scenes. Notably, we improve IoU from 26.3% to 51.0% on SemanticKITTI. Moreover, we explore two paradigms to integrate semantic label predictions, achieving implicit semantic completion. Codes and data are publicly available.

Citation

If you find our work useful in your research, please consider citing:

###to do###

Installation

Requirements

CUDA=11.1
python>=3.8
Pytorch>=1.8
numpy
ninja
MinkowskiEngine
tensorboard
pyyaml
configargparse
scripy
open3d
h5py
plyfile
scikit-image

Clone the repository:

git clone https://github.com/OPEN-AIR-SUN/SISC.git

Data preparation

Download the SemanticKITTI dataset from HERE. Unzip it into the same directory as SISC.

Training and inference

The configuration for training/inference is stored in opt.yaml, which can be modified as needed.

Scene Completion

Run the following command for a certain task (train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_sc.py --task=[task] --experiment_name=[experiment_name]

Semantic Scene Completion

SSC option A

Run the following command for a certain task (ssc_pretrain/ssc_valid/train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_ssc_a.py --task=[task] --experiment_name=[experiment_name]

Here, use ssc_pretrain/ssc_valid to train/validate the SSC part. Then the pre-trained model can be used to further train the whole model.

SSC option B

Run the following command for a certain task (train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_ssc_b.py --task=[task] --experiment_name=[experiment_name]

Model Zoo

Our pre-trained models can be downloaded here:

Ablation Pretrained Checkpoints
data augmentation no aug rotate & flip
Dnet input radial distance radial distance & height
Dnet structure last1 pruning last2 pruning last3 pruning last4 pruning Dnet relu 4convs output
Gnet structure width128 depth4 width512 depth4 width256 depth3 width256 depth5 Gnet relu
point sample on:off=1:2 on:off=2:3
positional encoding no encoding incF level10 incT level5 incT level15
sample strategy nearest
scale size scale 2 scale 4 scale 8 scale 16 scale 32
shape size shape 128 shape 512
SSC SSC option A SSC option B

These models correspond to the ablation study in our paper. The Scale 4 works as our baseline.

基于YoloX目标检测+DeepSort算法实现多目标追踪Baseline

项目简介: 使用YOLOX+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。 代码地址(欢迎star): https://github.com/Sharpiless/yolox-deepsort/ 最终效果: 运行demo: python demo

114 Dec 30, 2022
RoFormer_pytorch

PyTorch RoFormer 原版Tensorflow权重(https://github.com/ZhuiyiTechnology/roformer) chinese_roformer_L-12_H-768_A-12.zip (提取码:xy9x) 已经转化为PyTorch权重 chinese_r

yujun 283 Dec 12, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Implementation of Pix2Seq in PyTorch

pix2seq-pytorch Implementation of Pix2Seq paper Different from the paper image input size 1280 bin size 1280 LambdaLR scheduler used instead of Linear

Tony Shin 9 Dec 15, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Image-generation-baseline - MUGE Text To Image Generation Baseline

MUGE Text To Image Generation Baseline Requirements and Installation More detail

23 Oct 17, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Barış Ekim 148 Dec 01, 2022
Unofficial implementation of Pix2SEQ

Unofficial-Pix2seq: A Language Modeling Framework for Object Detection Unofficial implementation of Pix2SEQ. Please use this code with causion. Many i

159 Dec 12, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
Protect against subdomain takeover

domain-protect scans Amazon Route53 across an AWS Organization for domain records vulnerable to takeover deploy to security audit account scan your en

OVO Technology 0 Nov 17, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AI assistant built in python.the features are it can display time,say weather,open-google,youtube,instagram.

AK-Shanmugananthan 1 Nov 29, 2021
CTF Challenge for CSAW Finals 2021

Terminal Velocity Misc CTF Challenge for CSAW Finals 2021 This is a challenge I've had in mind for almost 15 years and never got around to building un

Jordan 6 Jul 30, 2022
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Caffe-like explicit model constructor. C(onfig)Model

cmodel Caffe-like explicit model constructor. C(onfig)Model Installation pip install git+https://github.com/bonlime/cmodel Usage In order to allow usi

1 Feb 18, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022