Semi-supervised Implicit Scene Completion from Sparse LiDAR

Related tags

Deep LearningSISC
Overview

Semi-supervised Implicit Scene Completion from Sparse LiDAR

Paper

Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZHANG from Institute for AI Industry Research(AIR), Tsinghua University.

demo

For complete video, click HERE.

teaser

sup0

sup1

sup2

sup3

sup4

Introduction

Recent advances show that semi-supervised implicit representation learning can be achieved through physical constraints like Eikonal equations. However, this scheme has not yet been successfully used for LiDAR point cloud data, due to its spatially varying sparsity.

In this repository, we develop a novel formulation that conditions the semi-supervised implicit function on localized shape embeddings. It exploits the strong representation learning power of sparse convolutional networks to generate shape-aware dense feature volumes, while still allows semi-supervised signed distance function learning without knowing its exact values at free space. With extensive quantitative and qualitative results, we demonstrate intrinsic properties of this new learning system and its usefulness in real-world road scenes. Notably, we improve IoU from 26.3% to 51.0% on SemanticKITTI. Moreover, we explore two paradigms to integrate semantic label predictions, achieving implicit semantic completion. Codes and data are publicly available.

Citation

If you find our work useful in your research, please consider citing:

###to do###

Installation

Requirements

CUDA=11.1
python>=3.8
Pytorch>=1.8
numpy
ninja
MinkowskiEngine
tensorboard
pyyaml
configargparse
scripy
open3d
h5py
plyfile
scikit-image

Clone the repository:

git clone https://github.com/OPEN-AIR-SUN/SISC.git

Data preparation

Download the SemanticKITTI dataset from HERE. Unzip it into the same directory as SISC.

Training and inference

The configuration for training/inference is stored in opt.yaml, which can be modified as needed.

Scene Completion

Run the following command for a certain task (train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_sc.py --task=[task] --experiment_name=[experiment_name]

Semantic Scene Completion

SSC option A

Run the following command for a certain task (ssc_pretrain/ssc_valid/train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_ssc_a.py --task=[task] --experiment_name=[experiment_name]

Here, use ssc_pretrain/ssc_valid to train/validate the SSC part. Then the pre-trained model can be used to further train the whole model.

SSC option B

Run the following command for a certain task (train/valid/visualize):

CUDA_VISIBLE_DEVICES=0 python -m torch.distributed.launch --nproc_per_node=1 main_ssc_b.py --task=[task] --experiment_name=[experiment_name]

Model Zoo

Our pre-trained models can be downloaded here:

Ablation Pretrained Checkpoints
data augmentation no aug rotate & flip
Dnet input radial distance radial distance & height
Dnet structure last1 pruning last2 pruning last3 pruning last4 pruning Dnet relu 4convs output
Gnet structure width128 depth4 width512 depth4 width256 depth3 width256 depth5 Gnet relu
point sample on:off=1:2 on:off=2:3
positional encoding no encoding incF level10 incT level5 incT level15
sample strategy nearest
scale size scale 2 scale 4 scale 8 scale 16 scale 32
shape size shape 128 shape 512
SSC SSC option A SSC option B

These models correspond to the ablation study in our paper. The Scale 4 works as our baseline.

System Combination for Grammatical Error Correction Based on Integer Programming

System Combination for Grammatical Error Correction Based on Integer Programming This repository contains the code and scripts that implement the syst

NUS NLP Group 0 Mar 29, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
Official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space

NeuralFusion This is the official implementation of NeuralFusion: Online Depth Map Fusion in Latent Space. We provide code to train the proposed pipel

53 Jan 01, 2023
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo"

dblmahmc Code to go with the paper "Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo" Requirements: https://github.com

1 Dec 17, 2021
Python Environment for Bayesian Learning

Pebl is a python library and command line application for learning the structure of a Bayesian network given prior knowledge and observations. Pebl in

Abhik Shah 103 Jul 14, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
UNet model with VGG11 encoder pre-trained on Kaggle Carvana dataset

TernausNet: U-Net with VGG11 Encoder Pre-Trained on ImageNet for Image Segmentation By Vladimir Iglovikov and Alexey Shvets Introduction TernausNet is

Vladimir Iglovikov 1k Dec 28, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
An open source python library for automated feature engineering

"One of the holy grails of machine learning is to automate more and more of the feature engineering process." ― Pedro Domingos, A Few Useful Things to

alteryx 6.4k Jan 03, 2023
Put blind watermark into a text with python

text_blind_watermark Put blind watermark into a text. Can be used in Wechat dingding ... How to Use install pip install text_blind_watermark Alice Pu

郭飞 164 Dec 30, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

💎A high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
NVIDIA Deep Learning Examples for Tensor Cores

NVIDIA Deep Learning Examples for Tensor Cores Introduction This repository provides State-of-the-Art Deep Learning examples that are easy to train an

NVIDIA Corporation 10k Dec 31, 2022