A small timeseries transformation API built on Flask and Pandas

Overview

#Mcflyin

###A timeseries transformation API built on Pandas and Flask

This is a small demo of an API to do timeseries transformations built on Flask and Pandas.

Concept

The idea is that you can make a POST request to the API with a simple list/array of timestamps, from any language, and get back some interesting transformations of that data.

Why?

Partly to show how straightforward it is to build such a thing. Python is great because it has very powerful, intuitive, quick-to-learn tools for both building web applications and doing data analysis/statistics.

That puts Python in kind of a unique position: powerful web tools, powerful scientific/numerical/statistical data tools. This API is a very simple example of how you can take advantage of both. Go read the source code- it's short and easy to grok. Bug fixes and pull requests welcome.

Getting Started

First we need to find some data. We're going to use some data that Wes McKinney provided in a recent blog post, with some statistics on Python posts on Stack Overflow. This is something of a contrived example: I'm manipulating the data in Python, sending to a Python backend, and then getting a response to manipulate in Python. Just know that all you need is an array of timestamp strings, no matter your language.

import pandas as pd

data = pd.read_csv('AllPandas.csv')
data = data['CreationDate'].tolist()

A simple array of timestamps:

>>>data[:10]
['2011-04-01 14:50:44',
 '2012-01-18 19:41:27',
 '2012-01-23 03:21:00',
 '2012-01-24 17:59:53',
 '2012-03-04 16:58:45',
 '2012-03-09 22:36:52',
 '2012-03-10 15:35:26',
 '2012-03-18 12:53:06',
 '2012-03-30 13:58:29',
 '2012-04-04 23:17:23']

With the McFlyin application running on localhost, lets make a request to resample the data on an daily basis, to get the number of posts per day:

import requests
import json

freq = {'D': 'Daily'}
sends = {'freq': json.dumps(freq), 'data': json.dumps(data)}
r = requests.post('http://127.0.0.1:5000/resample', data=sends)
response = r.json

The response is simple JSON:

{'Monthly': {'data': [1.0, 2.0, 1.0, 1.0,...
             'time': ['2011-03-31T00:00:00', '2011-04-30T00:00:00', '2011-05-31T00:00:00', '2011-06-30T00:00:00', '2011-07-31T00:00:00',...

Here's the distribution of daily questions on Stack Overflow for Pandas (monthly probably would have been a little more informative):

Daily

Let's call Mcflyin for a rolling sum on a seven-day window. It will resample to the given freq, then apply the window to the result:

freq = {'D': 'Weekly Rolling'}
sends = {'freq': json.dumps(freq), 'data': json.dumps(data), 'window': 7}
r = requests.post('http://127.0.0.1:5000/rolling_sum', data=sends)
response = r.json

Rolling

Let's look at the total questions asked by day:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/daily', data=sends)
response = r.json

dailysum

and daily means:

sends = {'data': json.dumps(data), 'how': json.dumps('mean')}
r = requests.post('http://127.0.0.1:5000/daily', data=sends)
response = r.json

dailymean

The same for hourly:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/hourly', data=sends)
response = r.json

dailymean

Finally, we can look at hourly by day-of-week:

sends = {'data': json.dumps(data), 'how': json.dumps('sum')}
r = requests.post('http://127.0.0.1:5000/daily_hours', data=sends)
response = r.json

hourdow

Live demo here

Dependencies

Pandas, Numpy, Requests, Flask

How did you make those colorful graphs?

Vincent and Bearcart

Status

Lots of stuff that could be better- error handling on the requests, probably better handling of weird timestamps, etc. This is just a small demo of how powerful Python can be for building a statistics backend with relatively few lines of code.

If I want to write a front-end in a different language, can I put it in the examples folder?

Yes! PR's welcome.

Owner
Rob Story
Rob Story
A tool for creating SVG timelines from simple JSON input.

A tool for creating SVG timelines from simple JSON input.

Jason Reisman 432 Dec 30, 2022
A Python function that makes flower plots.

Flower plot A Python 3.9+ function that makes flower plots. Installation This package requires at least Python 3.9. pip install

Thomas Roder 4 Jun 12, 2022
These data visualizations were created as homework for my CS40 class. I hope you enjoy!

Data Visualizations These data visualizations were created as homework for my CS40 class. I hope you enjoy! Nobel Laureates by their Country of Birth

9 Sep 02, 2022
Automatically generate GitHub activity!

Commit Bot Automatically generate GitHub activity! We've all wanted to be the developer that commits every day, but that requires a lot of work. Let's

Ricky 4 Jun 07, 2022
Smarthome Dashboard with Grafana & InfluxDB

Smarthome Dashboard with Grafana & InfluxDB This is a complete overhaul of my Raspberry Dashboard done with Flask. I switched from sqlite to InfluxDB

6 Oct 20, 2022
It's an application to calculate I from v and r. It can also plot a graph between V vs I.

Ohm-s-Law-Visualizer It's an application to calculate I from v and r using Ohm's Law. It can also plot a graph between V vs I. Story I'm doing my Unde

Sihab Sahariar 1 Nov 20, 2021
Implementation of SOMs (Self-Organizing Maps) with neighborhood-based map topologies.

py-self-organizing-maps Simple implementation of self-organizing maps (SOMs) A SOM is an unsupervised method for learning a mapping from a discrete ne

Jonas Grebe 6 Nov 22, 2022
Sky attention heatmap of submissions to astrometry.net

astroheat Installation Requires Python 3.6+, Tested with Python 3.9.5 Install library dependencies pip install -r requirements.txt The program require

4 Jun 20, 2022
Visualization Website by using Dash and Heroku

Visualization Website by using Dash and Heroku You can visit the website https://payroll-expense-analysis.herokuapp.com/ In this project, I am interes

YF Liu 1 Jan 14, 2022
A napari plugin for visualising and interacting with electron cryotomograms.

napari-tomoslice A napari plugin for visualising and interacting with electron cryotomograms. Installation You can install napari-tomoslice via pip: p

3 Jan 03, 2023
Altair extension for saving charts in a variety of formats.

Altair Saver This packge provides extensions to Altair for saving charts to a variety of output types. Supported output formats are: .json/.vl.json: V

Altair 85 Dec 09, 2022
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
A declarative (epi)genomics visualization library for Python

gos is a declarative (epi)genomics visualization library for Python. It is built on top of the Gosling JSON specification, providing a simplified interface for authoring interactive genomic visualiza

Gosling 107 Dec 14, 2022
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver

Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constrai

Sabbella Prasanna 1 Jan 11, 2022
Chem: collection of mostly python code for molecular visualization, QM/MM, FEP, etc

chem: collection of mostly python code for molecular visualization, QM/MM, FEP,

5 Sep 02, 2022
Visualizations for machine learning datasets

Introduction The facets project contains two visualizations for understanding and analyzing machine learning datasets: Facets Overview and Facets Dive

PAIR code 7.1k Jan 07, 2023
Runtime analysis of code with plotting

Runtime analysis of code with plotting A quick comparison among Python, Cython, and the C languages A Programming Assignment regarding the Programming

Cena Ashoori 2 Dec 24, 2021
Draw tree diagrams from indented text input

Draw tree diagrams This repository contains two very different scripts to produce hierarchical tree diagrams like this one: $ ./classtree.py collectio

Luciano Ramalho 8 Dec 14, 2022
A Graph Learning library for Humans

A Graph Learning library for Humans These novel algorithms include but are not limited to: A graph construction and graph searching class can be found

Richard Tjörnhammar 1 Feb 08, 2022
nvitop, an interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management

An interactive NVIDIA-GPU process viewer, the one-stop solution for GPU process management.

Xuehai Pan 1.3k Jan 02, 2023