The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Overview

tldr-transformers

The tl;dr on a few notable transformer/language model papers + other papers (alignment, memorization, etc).

Models: GPT- *, * BERT *, Adapter- *, * T5, etc.

BERT and T5 (art from the original papers)

     

Each set of notes includes links to the paper, the original code implementation (if available) and the Huggingface 🤗 implementation.

Here is an example: t5.

The transformers papers are presented somewhat chronologically below. Go to the " 👉 Notes 👈 " column below to find the notes for each paper.

This repo also includes a table quantifying the differences across transformer papers all in one table.

Contents

Quick_Note

This is not an intro to deep learning in NLP. If you are looking for that, I recommend one of the following: Fast AI's course, one of the Coursera courses, or maybe this old thing. Come here after that.

Motivation

With the explosion in papers on all things Transformers the past few years, it seems useful to catalog the salient features/results/insights of each paper in a digestible format. Hence this repo.

Models

Model Year Institute Paper 👉 Notes 👈 Original Code Huggingface 🤗 Other Repo
Transformer 2017 Google Attention is All You Need Skipped, too many good write-ups: ?
GPT-3 2018 OpenAI Language Models are Unsupervised Multitask Learners To-Do X X
GPT-J-6B 2021 EleutherAI GPT-J-6B: 6B Jax-Based Transformer (public GPT-3) X here x x
BERT 2018 Google BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT notes here here
DistilBERT 2019 Huggingface DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter DistilBERT notes here
ALBERT 2019 Google/Toyota ALBERT: A Lite BERT for Self-supervised Learning of Language Representations ALBERT notes here here
RoBERTa 2019 Facebook RoBERTa: A Robustly Optimized BERT Pretraining Approach RoBERTa notes here here
BART 2019 Facebook BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension BART notes here here
T5 2019 Google Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer T5 notes here here
Adapter-BERT 2019 Google Parameter-Efficient Transfer Learning for NLP Adapter-BERT notes here - here
Megatron-LM 2019 NVIDIA Megatron-LM: Training Multi-Billion Parameter Language Models Using Model Parallelism Megatron notes here - here
Reformer 2020 Google Reformer: The Efficient Transformer Reformer notes here
byT5 2021 Google ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 notes here here
CLIP 2021 OpenAI Learning Transferable Visual Models From Natural Language Supervision CLIP notes here here
DALL-E 2021 OpenAI Zero-Shot Text-to-Image Generation DALL-E notes here -
Codex 2021 OpenAI Evaluating Large Language Models Trained on Code Codex notes X -

BigTable

All of the table summaries found ^ collapsed into one really big table here.

Alignment

Paper Year Institute 👉 Notes 👈 Codes
Fine-Tuning Language Models from Human Preferences 2019 OpenAI To-Do None

Scaling

Paper Year Institute 👉 Notes 👈 Codes
Scaling Laws for Neural Language Models 2020 OpenAI To-Do None

Memorization

Paper Year Institute 👉 Notes 👈 Codes
Extracting Training Data from Large Language Models 2021 Google et al. To-Do None
Deduplicating Training Data Makes Language Models Better 2021 Google et al. To-Do None

FewLabels

Paper Year Institute 👉 Notes 👈 Codes
An Empirical Survey of Data Augmentation for Limited Data Learning in NLP 2021 GIT/UNC To-Do None
Learning with fewer labeled examples 2021 Kevin Murphy & Colin Raffel (Preprint: "Probabilistic Machine Learning", Chapter 19) Worth a read, won't summarize here. None

Contribute

If you are interested in contributing to this repo, feel free to do the following:

  1. Fork the repo.
  2. Create a Draft PR with the paper of interest (to prevent "in-flight" issues).
  3. Use the suggested template to write your "tl;dr". If it's an architecture paper, you may also want to add to the larger table here.
  4. Submit your PR.

Errata

Undoubtedly there is information that is incorrect here. Please open an Issue and point it out.

Citation

@misc{cliff-notes-transformers,
  author = {Thompson, Will},
  url = {https://github.com/will-thompson-k/cliff-notes-transformers},
  year = {2021}
}

For the notes above, I've linked the original papers.

License

MIT

Owner
Will Thompson
Will Thompson
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
Social Distancing Detector

Computer vision has opened up a lot of opportunities to explore into AI domain that were earlier highly limited. Here is an application of haarcascade classifier and OpenCV to develop a social distan

Ashish Pandey 2 Jul 18, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
All the code and files related to the MI-Lab of UE19CS305 course in sem 5

Machine-Intelligence-Lab-CS305 The compilation of all the code an drelated files from MI-Lab UE19CS305 (of batch 2019-2023) offered by PES University

Arvind Krishna 3 Nov 10, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Non-Vacuous Generalisation Bounds for Shallow Neural Networks

This package requires jax, tensorflow, and numpy. Either tensorflow or scikit-learn can be used for loading data. To run in a nix-shell with required

Felix Biggs 0 Feb 04, 2022
AdamW optimizer and cosine learning rate annealing with restarts

AdamW optimizer and cosine learning rate annealing with restarts This repository contains an implementation of AdamW optimization algorithm and cosine

Maksym Pyrozhok 133 Dec 20, 2022
A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

A method that utilized Generative Adversarial Network (GAN) to interpret the black-box deep image classifier models by PyTorch.

Yunxia Zhao 3 Dec 29, 2022
Code for pre-training CharacterBERT models (as well as BERT models).

Pre-training CharacterBERT (and BERT) This is a repository for pre-training BERT and CharacterBERT. DISCLAIMER: The code was largely adapted from an o

Hicham EL BOUKKOURI 31 Dec 05, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022