Codes and Data Processing Files for our paper.

Related tags

Deep LearningContraWR
Overview

Code Scripts and Processing Files for EEG Sleep Staging Paper

1. Folder Tree

  • ./src_preprocess (data preprocessing files for SHHS and Sleep EDF)

    • sleepEDF_cassette_process.py (script for processing Sleep EDF data)
    • shhs_processing.py (script for processing SHHS dataset)
  • ./src

    • loss.py (the contrastive loss function of MoCo, SimCLR, BYOL, SimSiame and our ContraWR)
    • model.py (the encoder model for Sleep EDF and SHHS data)
    • self_supervised.py (the code for running self-supervised model)
    • supervised.py (the code for running supervised STFT CNN model)
    • utils.py (other functionalities, e.g., data loader)

2. Data Preparation

2.1 Instructions for Sleep EDF

  • Step1: download the Sleep EDF data from https://physionet.org/content/sleep-edfx/1.0.0/
    • we will use the Sleep EDF cassette portion
    mkdir SLEEP_data; cd SLEEP_data
    wget -r -N -c -np https://physionet.org/files/sleep-edfx/1.0.0/
  • Step2: running sleepEDF_cassette_process.py to process the data
    • running the following command line. The data will be stored in ./SLEEP_data/cassette_processed/pretext, ./SLEEP_data/cassette_processed/train and ./SLEEP_data/cassette_processed/test
    cd ../src_preprocess
    python sleepEDF_cassette_process.py

2.2 Instructions for SHHS

  • Step1: download the SHHS data from https://sleepdata.org/datasets/shhs
    mkdir SHHS_data; cd SHHS_data
    [THEN DOWNLOAD YOUR DATASET HERE, NAME THE FOLDER "SHHS"]
  • Step2: running shhs_preprocess.py to process the data
    • running the following command line. The data will be stored in ./SHHS_data/processed/pretext, ./SHHS_data/processed/train and ./SHHS_data/processed/test
    cd ../src_preprocess
    python shhs_process.py

3. Running the Experiments

First, go to the ./src directory, then run the supervised model

cd ./src
# run on the SLEEP dataset
python -W ignore supervised.py --dataset SLEEP --n_dim 128
# run on the SHHS dataset
python -W ignore supervised.py --dataset SHHS --n_dim 256

Second, run the self-supervised models

# run on the SLEEP dataset
python -W ignore self_supervised.py --dataset SLEEP --model ContraWR --n_dim 128
# run on the SHHS dataset
python -W ignore self_supervised.py --dataset SHHS --model ContraWR --n_dim 256
# try other self-supervised models
# change "ContraWR" to "MoCo", "SimCLR", "BYOL", "SimSiam"
Owner
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
CLASP - Contrastive Language-Aminoacid Sequence Pretraining

CLASP - Contrastive Language-Aminoacid Sequence Pretraining Repository for creating models pretrained on language and aminoacid sequences similar to C

Michael Pieler 133 Dec 29, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022) This repo is the official code for DeepMIH: Deep Invertible Network for Multip

Junpeng Jing 67 Nov 22, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
A library for graph deep learning research

Documentation | Paper [JMLR] | Tutorials | Benchmarks | Examples DIG: Dive into Graphs is a turnkey library for graph deep learning research. Why DIG?

DIVE Lab, Texas A&M University 1.3k Jan 01, 2023
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
a reimplementation of UnFlow in PyTorch that matches the official TensorFlow version

pytorch-unflow This is a personal reimplementation of UnFlow [1] using PyTorch. Should you be making use of this work, please cite the paper according

Simon Niklaus 134 Nov 20, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
LWCC: A LightWeight Crowd Counting library for Python that includes several pretrained state-of-the-art models.

LWCC: A LightWeight Crowd Counting library for Python LWCC is a lightweight crowd counting framework for Python. It wraps four state-of-the-art models

Matija Teršek 39 Dec 28, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?".

Patches Are All You Need? 🤷 This repository contains an implementation of ConvMixer for the ICLR 2022 submission "Patches Are All You Need?". Code ov

ICLR 2022 Author 934 Dec 30, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022