SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

Related tags

Deep LearningSCALE
Overview

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

Paper

This repository contains the official PyTorch implementation of the CVPR 2021 paper:

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements
Qianli Ma, Shunsuke Saito, Jinlong Yang, Siyu Tang, and Michael. J. Black
Full paper | Video | Project website | Poster

Installation

  • The code has been tested on Ubuntu 18.04, python 3.6 and CUDA 10.0.

  • First, in the folder of this SCALE repository, run the following commands to create a new virtual environment and install dependencies:

    python3 -m venv $HOME/.virtualenvs/SCALE
    source $HOME/.virtualenvs/SCALE/bin/activate
    pip install -U pip setuptools
    pip install -r requirements.txt
    mkdir checkpoints
  • Install the Chamfer Distance package (MIT license, taken from this implementation). Note: the compilation is verified to be successful under CUDA 10.0, but may not be compatible with later CUDA versions.

    cd chamferdist
    python setup.py install
    cd ..
  • You are now good to go with the next steps! All the commands below are assumed to be run from the SCALE repository folder, within the virtual environment created above.

Run SCALE

  • Download our pre-trained model weights, unzip it under the checkpoints folder, such that the checkpoints' path is /checkpoints/SCALE_demo_00000_simuskirt/.

  • Download the packed data for demo, unzip it under the data/ folder, such that the data file paths are /data/packed/00000_simuskirt//.

  • With the data and pre-trained model ready, the following code will generate a sequence of .ply files of the teaser dancing animation in results/saved_samples/SCALE_demo_00000_simuskirt:

    python main.py --config configs/config_demo.yaml
  • To render images of the generated point sets, run the following command:

    python render/o3d_render_pcl.py --model_name SCALE_demo_00000_simuskirt

    The images (with both the point normal coloring and patch coloring) will be saved under results/rendered_imgs/SCALE_demo_00000_simuskirt.

Train SCALE

Training demo with our data examples

  • Assume the demo training data is downloaded from the previous step under data/packed/. Now run:

    python main.py --config configs/config_train_demo.yaml

    The training will start!

  • The code will also save the loss curves in the TensorBoard logs under tb_logs//SCALE_train_demo_00000_simuskirt.

  • Examples from the validation set at every 10 (can be set) epoch will be saved at results/saved_samples/SCALE_train_demo_00000_simuskirt/val.

  • Note: the training data provided above are only for demonstration purposes. Due to their very limited number of frames, they will not likely yield a satisfying model. Please refer to the README files in the data/ and lib_data/ folders for more information on how to process your customized data.

Training with your own data

We provide example codes in lib_data/ to assist you in adapting your own data to the format required by SCALE. Please refer to lib_data/README for more details.

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the SCALE code, including the scripts, animation demos and pre-trained models. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this GitHub repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

The SMPL body related files (including assets/{smpl_faces.npy, template_mesh_uv.obj} and the UV masks under assets/uv_masks/) are subject to the license of the SMPL model. The provided demo data (including the body pose and the meshes of clothed human bodies) are subject to the license of the CAPE Dataset. The Chamfer Distance implementation is subject to its original license.

Citations

@inproceedings{Ma:CVPR:2021,
  title = {{SCALE}: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements},
  author = {Ma, Qianli and Saito, Shunsuke and Yang, Jinlong and Tang, Siyu and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}
Code of 3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces

3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swapping for Bodies and Faces Installation After cloning the repo open

37 Dec 03, 2022
A PyTorch implementation of Implicit Q-Learning

IQL-PyTorch This repository houses a minimal PyTorch implementation of Implicit Q-Learning (IQL), an offline reinforcement learning algorithm, along w

Garrett Thomas 30 Dec 12, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构

BaseCls BaseCls 是一个基于 MegEngine 的预训练模型库,帮助大家挑选或训练出更适合自己科研或者业务的模型结构。 文档地址:https://basecls.readthedocs.io 安装 安装环境 BaseCls 需要 Python = 3.6。 BaseCls 依赖 M

MEGVII Research 28 Dec 23, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Intrusion Test Tool with Python

P3ntsT00L Uma ferramenta escrita em Python, feita para Teste de intrusão. Requisitos ter o python 3.9.8 instalado em sua máquina. ter a git instalada

josh washington 2 Dec 27, 2021
Modeling CNN layers activity with Gaussian mixture model

GMM-CNN This code package implements the modeling of CNN layers activity with Gaussian mixture model and Inference Graphs visualization technique from

3 Aug 05, 2022
Evaluating different engineering tricks that make RL work

Reinforcement Learning Tricks, Index This repository contains the code for the paper "Distilling Reinforcement Learning Tricks for Video Games". Short

Anssi 15 Dec 26, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity

Efficient electromagnetic solver based on rigorous coupled-wave analysis for 3D and 2D multi-layered structures with in-plane periodicity, such as gratings, photonic-crystal slabs, metasurfaces, surf

Alex Song 17 Dec 19, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision"

RUAS This is the official code for the paper "Learning with Nested Scene Modeling and Cooperative Architecture Search for Low-Light Vision" A prelimin

Vision & Optimization Group (VOG) 2 May 05, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving

MultiSiam: Self-supervised Multi-instance Siamese Representation Learning for Autonomous Driving Code will be available soon. Motivation Architecture

Kai Chen 24 Apr 19, 2022