SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

Related tags

Deep LearningSCALE
Overview

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements (CVPR 2021)

Paper

This repository contains the official PyTorch implementation of the CVPR 2021 paper:

SCALE: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements
Qianli Ma, Shunsuke Saito, Jinlong Yang, Siyu Tang, and Michael. J. Black
Full paper | Video | Project website | Poster

Installation

  • The code has been tested on Ubuntu 18.04, python 3.6 and CUDA 10.0.

  • First, in the folder of this SCALE repository, run the following commands to create a new virtual environment and install dependencies:

    python3 -m venv $HOME/.virtualenvs/SCALE
    source $HOME/.virtualenvs/SCALE/bin/activate
    pip install -U pip setuptools
    pip install -r requirements.txt
    mkdir checkpoints
  • Install the Chamfer Distance package (MIT license, taken from this implementation). Note: the compilation is verified to be successful under CUDA 10.0, but may not be compatible with later CUDA versions.

    cd chamferdist
    python setup.py install
    cd ..
  • You are now good to go with the next steps! All the commands below are assumed to be run from the SCALE repository folder, within the virtual environment created above.

Run SCALE

  • Download our pre-trained model weights, unzip it under the checkpoints folder, such that the checkpoints' path is /checkpoints/SCALE_demo_00000_simuskirt/.

  • Download the packed data for demo, unzip it under the data/ folder, such that the data file paths are /data/packed/00000_simuskirt//.

  • With the data and pre-trained model ready, the following code will generate a sequence of .ply files of the teaser dancing animation in results/saved_samples/SCALE_demo_00000_simuskirt:

    python main.py --config configs/config_demo.yaml
  • To render images of the generated point sets, run the following command:

    python render/o3d_render_pcl.py --model_name SCALE_demo_00000_simuskirt

    The images (with both the point normal coloring and patch coloring) will be saved under results/rendered_imgs/SCALE_demo_00000_simuskirt.

Train SCALE

Training demo with our data examples

  • Assume the demo training data is downloaded from the previous step under data/packed/. Now run:

    python main.py --config configs/config_train_demo.yaml

    The training will start!

  • The code will also save the loss curves in the TensorBoard logs under tb_logs//SCALE_train_demo_00000_simuskirt.

  • Examples from the validation set at every 10 (can be set) epoch will be saved at results/saved_samples/SCALE_train_demo_00000_simuskirt/val.

  • Note: the training data provided above are only for demonstration purposes. Due to their very limited number of frames, they will not likely yield a satisfying model. Please refer to the README files in the data/ and lib_data/ folders for more information on how to process your customized data.

Training with your own data

We provide example codes in lib_data/ to assist you in adapting your own data to the format required by SCALE. Please refer to lib_data/README for more details.

License

Software Copyright License for non-commercial scientific research purposes. Please read carefully the terms and conditions and any accompanying documentation before you download and/or use the SCALE code, including the scripts, animation demos and pre-trained models. By downloading and/or using the Model & Software (including downloading, cloning, installing, and any other use of this GitHub repository), you acknowledge that you have read these terms and conditions, understand them, and agree to be bound by them. If you do not agree with these terms and conditions, you must not download and/or use the Model & Software. Any infringement of the terms of this agreement will automatically terminate your rights under this License.

The SMPL body related files (including assets/{smpl_faces.npy, template_mesh_uv.obj} and the UV masks under assets/uv_masks/) are subject to the license of the SMPL model. The provided demo data (including the body pose and the meshes of clothed human bodies) are subject to the license of the CAPE Dataset. The Chamfer Distance implementation is subject to its original license.

Citations

@inproceedings{Ma:CVPR:2021,
  title = {{SCALE}: Modeling Clothed Humans with a Surface Codec of Articulated Local Elements},
  author = {Ma, Qianli and Saito, Shunsuke and Yang, Jinlong and Tang, Siyu and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}
}
Enhancing Knowledge Tracing via Adversarial Training

Enhancing Knowledge Tracing via Adversarial Training This repository contains source code for the paper "Enhancing Knowledge Tracing via Adversarial T

Xiaopeng Guo 14 Oct 24, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
Caffe implementation for Hu et al. Segmentation for Natural Language Expressions

Segmentation from Natural Language Expressions This repository contains the Caffe reimplementation of the following paper: R. Hu, M. Rohrbach, T. Darr

10 Jul 27, 2021
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
text_recognition_toolbox: The reimplementation of a series of classical scene text recognition papers with Pytorch in a uniform way.

text recognition toolbox 1. 项目介绍 该项目是基于pytorch深度学习框架,以统一的改写方式实现了以下6篇经典的文字识别论文,论文的详情如下。该项目会持续进行更新,欢迎大家提出问题以及对代码进行贡献。 模型 论文标题 发表年份 模型方法划分 CRNN 《An End-t

168 Dec 24, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022
StyleGAN2-ADA-training-jupyter - Training custom datasets in styleGAN2-ADA by NVIDIA using Jupyter

styleGAN2-ADA-training-jupyter Training custom datasets in styleGAN2-ADA on Jupyter Official StyleGAN2-ADA by NIVIDIA Paper Training Generative Advers

Mang Su Hyun 2 Feb 24, 2022
Blender Python - Node-based multi-line text and image flowchart

MindMapper v0.8 Node-based text and image flowchart for Blender Mindmap with shortcuts visible: Mindmap with shortcuts hidden: Notes This was requeste

SpectralVectors 58 Oct 08, 2022
This repo tries to recognize faces in the dataset you created

YÜZ TANIMA SİSTEMİ Bu repo oluşturacağınız yüz verisetlerini tanımaya çalışan ma

Mehdi KOŞACA 2 Dec 30, 2021
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming. Outperforming `GPT-3` on SuperGLUE Few-Shot text classification.

YerevaNN 75 Nov 06, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
Code for Multiple Instance Active Learning for Object Detection, CVPR 2021

Language: 简体中文 | English Introduction This is the code for Multiple Instance Active Learning for Object Detection, CVPR 2021. Installation A Linux pla

Tianning Yuan 269 Dec 21, 2022