Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Overview

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient

This repository is the official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Shanchao Yang, Kaili Ma, Baoxiang Wang, Hongyuan Zha, Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient

ResiNet policy_architecture

Installation

  • CUDA 11.+

  • Create Python environment (3.+), using anaconda is recommended:

    conda create -n my-resinet-env python=3.8
    conda activate my-resinet-env
    
  • Install Pytorch using anaconda

    conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
    

    or using Pip

    pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
    
  • Install networkx, tensorflow, tensorboardX, numpy, numba, dm-tree, gym, dgl, pyg

    pip install networkx==2.5
    pip install tensorflow-gpu==2.3.0
    pip install numpy==1.20.3
    pip install numba==0.52.0
    pip install gym==0.18.0
    pip install tabulate
    pip install dm-tree
    pip install lz4
    pip install opencv-python
    pip install tensorboardX
    pip install dgl-cu111 -f https://data.dgl.ai/wheels/repo.html
    pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-geometric
    
  • Install ray

    • Use the specific commit version of ray 8a066474d44110f6fddd16618351fe6317dd7e03

      For Linux:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-manylinux2014_x86_64.whl
      

      For Windows:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-win_amd64.whl
      
    • Download our repository, which includes the source codes of ray and ResiNet.

      git clone https://github.com/yangysc/ResiNet.git
      
    • Set the symlink of rllib to use our custom rllib (remeber to remove these symlinks before uninstalling ray!)

      python ResiNet/ray-master/python/ray/setup-dev.py -y
      

Code description

There are 4 important file folders.

  • Environment: ResiNet/ray-master/rllib/examples/env/

    • graphenv.py is the edge rewiring environment based on OpenAI gym.

    • parametric_actions_graph.py is the env wrapper that accesses the graph from graphenv.py and returns the dict observation.

    • utils_.py defines the reward calculation strategy.

    • get_mask.py defines the action mask calculation for selecting the first edge and the second edge.

    • datasets is the folder for providing training and test datasets. The following table (Table 2, Page 17 in the paper) records the statistics of graphs used in the paper.

      Dataset Node Edge Action Space Size
      BA-15 15 54 5832
      BA-50 50 192 73728
      BA-100 100 392 307328
      EU 217 640 819200
      BA-10-30 () 10-30 112 25088
      BA-20-200 () 20-200 792 1254528
  • Model: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_model.py is the network architecture of ResiNet.
    • gnnmodel.py defines the GIN model based on dgl.
  • Distribution: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_dist.py is the action distribution module of ResiNet.
  • Loss: ResiNet/ray-master/rllib/agents/ppo/

    • ppo_torch_policy.py defines the DDPPO loss function.

Run

Platform

We tested the following experiments (see Command) with

  • GPU: GEFORCE RTX 3090 * 2 (24 G memory * 2 = 48G in total)
  • CPU: AMD 3990X

Adjust the corresponding hyperparameters according to your GPU hardware. Our code supports the multiple gpus training thanks to ray. The GPU memory capacity and the number of gpu are the main bottlenecks for DDPPO. The usage of more gpus means a faster training.

  • num-gpus: the number of GPU available in total (increase it if more gpus are available)
  • bs: batch size
  • mini-bs: minibatch size
  • tasks-per-gpu:the number of paralleled worker
  • gpus_per_instance: the number of GPU used for this train instance (ray can support tune multiple instances simultaneously) (increase it if more gpus are available)

Command

First go to the following folder.

cd ResiNet/ray-master/rllib/examples

Train

  • Transductive setting (dataset is in [example_15, example_50, example_100, EU])

    • Run the experiment on optimizing the BA-15 dataset with alpha=0, risilience metric R, node degree-based attack:

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of the filtration order (set to -3):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-3  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of alpha (the coefficient of weighted sum of resilience and utility) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=-1 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      
    • Optimize the BA-15 dataset with a grid search of robust-measure (resilience metric, choice is [R, sr, ac]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=-1 --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of second-obj-func (utility metric, choice is [ge, le]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=-1 --seed=-1 
      
    • Optimize the BA-15 dataset with a grid search of seed (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=-1 
      
    • Optimize the EU dataset (increase bs and hidden_dim if more gpus are available. Four gpus would be better for hidden_dim=64):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=EU --tasks-per-gpu=1 --gpus_per_instance=2 --bs=1024 --mini-bs=256 --filtration_order=1 --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=32 --attack_strategy=degree --second-obj-func=ge --seed=0  
      
  • Inductive setting (dataset is in [ba_small_30, ba_mixed])

    • for the ba_small_30 dataset (use full filtration)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_small_30 --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • for the ba_mixed dataset (set filtratio_order to 1, tasks-per-gpu to 1 and bs to 2048)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_mixed --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      

We highly recommend using tensorboard to monitor the training process. To do this, you may run

tensorboard --logdir log/DDPPO

Set checkpoint_freq to be non-zero (zero by default) if you want to save the trained models during the training process. And the final trained model will be saved by default when the training is done. All trained models and tensorboard logs are saved in the folder log/DDPPO/.

Test

  • BA-15 (dataset is in [example_15, example_50, example_100, EU, ba_small_30, ba_mixed]) (The problem setting related hyperparameters need to be consistent with the values used in training.)
    CUDA_VISIBLE_DEVICES=0,1 python evaluate_trained_agent_dppo.py --num-gpus=2 --tasks-per-gpu=1 --bs=400 --mini-bs=16 --gpus_per_instance=1 --ppo_alg=dcppo --attack_strategy=degree --second-obj-func=le --seed=0 --reward_scale=1 --test_num=-1 --cwd-path=./test  --alpha=0.5 --dataset=example_15 --filtration_order=-1  --robust-measure=ac --hidden_dim=64
    
    Remember to set the restore_path in evaluate_trained_agent_dppo.py (Line 26) to the trained model folder.
Owner
Shanchao Yang
PhD student at CUHK-Shenzhen; Graph learning & Reinforcement learning
Shanchao Yang
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
Minecraft agent to farm resources using reinforcement learning

BarnyardBot CS 175 group project using Malmo download BarnyardBot.py into the python examples directory and run 'python BarnyardBot.py' in the console

0 Jul 26, 2022
Pytorch implementation of Nueral Style transfer

Nueral Style Transfer Pytorch implementation of Nueral style transfer algorithm , it is used to apply artistic styles to content images . Content is t

Abhinav 9 Oct 15, 2022
Using VideoBERT to tackle video prediction

VideoBERT This repo reproduces the results of VideoBERT (https://arxiv.org/pdf/1904.01766.pdf). Inspiration was taken from https://github.com/MDSKUL/M

75 Dec 14, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data (NeurIPS 2021) This repository will provide the official PyTorch implementa

Liming Jiang 238 Nov 25, 2022
Python scripts form performing stereo depth estimation using the HITNET model in ONNX.

ONNX-HITNET-Stereo-Depth-estimation Python scripts form performing stereo depth estimation using the HITNET model in ONNX. Stereo depth estimation on

Ibai Gorordo 30 Nov 08, 2022
YOLOv4 / Scaled-YOLOv4 / YOLO - Neural Networks for Object Detection (Windows and Linux version of Darknet )

Yolo v4, v3 and v2 for Windows and Linux (neural networks for object detection) Paper YOLO v4: https://arxiv.org/abs/2004.10934 Paper Scaled YOLO v4:

Alexey 20.2k Jan 09, 2023
Whisper is a file-based time-series database format for Graphite.

Whisper Overview Whisper is one of three components within the Graphite project: Graphite-Web, a Django-based web application that renders graphs and

Graphite Project 1.2k Dec 25, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
DeRF: Decomposed Radiance Fields

DeRF: Decomposed Radiance Fields Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li, Kwang Moo Yi, Andrea Tagliasacchi Links Paper Project Page Abstract

UBC Computer Vision Group 24 Dec 02, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting

DenseCLIP: Language-Guided Dense Prediction with Context-Aware Prompting Created by Yongming Rao*, Wenliang Zhao*, Guangyi Chen, Yansong Tang, Zheng Z

Yongming Rao 321 Dec 27, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
验证码识别 深度学习 tensorflow 神经网络

captcha_tf2 验证码识别 深度学习 tensorflow 神经网络 使用卷积神经网络,对字符,数字类型验证码进行识别,tensorflow使用2.0以上 目前项目还在更新中,诸多bug,欢迎提出issue和PR, 希望和你一起共同完善项目。 实例demo 训练过程 优化器选择: Adam

5 Apr 28, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022