Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Overview

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient

This repository is the official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Shanchao Yang, Kaili Ma, Baoxiang Wang, Hongyuan Zha, Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient

ResiNet policy_architecture

Installation

  • CUDA 11.+

  • Create Python environment (3.+), using anaconda is recommended:

    conda create -n my-resinet-env python=3.8
    conda activate my-resinet-env
    
  • Install Pytorch using anaconda

    conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c nvidia
    

    or using Pip

    pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
    
  • Install networkx, tensorflow, tensorboardX, numpy, numba, dm-tree, gym, dgl, pyg

    pip install networkx==2.5
    pip install tensorflow-gpu==2.3.0
    pip install numpy==1.20.3
    pip install numba==0.52.0
    pip install gym==0.18.0
    pip install tabulate
    pip install dm-tree
    pip install lz4
    pip install opencv-python
    pip install tensorboardX
    pip install dgl-cu111 -f https://data.dgl.ai/wheels/repo.html
    pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
    pip install torch-geometric
    
  • Install ray

    • Use the specific commit version of ray 8a066474d44110f6fddd16618351fe6317dd7e03

      For Linux:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-manylinux2014_x86_64.whl
      

      For Windows:

      pip install -U https://s3-us-west-2.amazonaws.com/ray-wheels/master/8a066474d44110f6fddd16618351fe6317dd7e03/ray-2.0.0.dev0-cp38-cp38-win_amd64.whl
      
    • Download our repository, which includes the source codes of ray and ResiNet.

      git clone https://github.com/yangysc/ResiNet.git
      
    • Set the symlink of rllib to use our custom rllib (remeber to remove these symlinks before uninstalling ray!)

      python ResiNet/ray-master/python/ray/setup-dev.py -y
      

Code description

There are 4 important file folders.

  • Environment: ResiNet/ray-master/rllib/examples/env/

    • graphenv.py is the edge rewiring environment based on OpenAI gym.

    • parametric_actions_graph.py is the env wrapper that accesses the graph from graphenv.py and returns the dict observation.

    • utils_.py defines the reward calculation strategy.

    • get_mask.py defines the action mask calculation for selecting the first edge and the second edge.

    • datasets is the folder for providing training and test datasets. The following table (Table 2, Page 17 in the paper) records the statistics of graphs used in the paper.

      Dataset Node Edge Action Space Size
      BA-15 15 54 5832
      BA-50 50 192 73728
      BA-100 100 392 307328
      EU 217 640 819200
      BA-10-30 () 10-30 112 25088
      BA-20-200 () 20-200 792 1254528
  • Model: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_model.py is the network architecture of ResiNet.
    • gnnmodel.py defines the GIN model based on dgl.
  • Distribution: ResiNet/ray-master/rllib/examples/models/

    • autoregressive_action_dist.py is the action distribution module of ResiNet.
  • Loss: ResiNet/ray-master/rllib/agents/ppo/

    • ppo_torch_policy.py defines the DDPPO loss function.

Run

Platform

We tested the following experiments (see Command) with

  • GPU: GEFORCE RTX 3090 * 2 (24 G memory * 2 = 48G in total)
  • CPU: AMD 3990X

Adjust the corresponding hyperparameters according to your GPU hardware. Our code supports the multiple gpus training thanks to ray. The GPU memory capacity and the number of gpu are the main bottlenecks for DDPPO. The usage of more gpus means a faster training.

  • num-gpus: the number of GPU available in total (increase it if more gpus are available)
  • bs: batch size
  • mini-bs: minibatch size
  • tasks-per-gpu:the number of paralleled worker
  • gpus_per_instance: the number of GPU used for this train instance (ray can support tune multiple instances simultaneously) (increase it if more gpus are available)

Command

First go to the following folder.

cd ResiNet/ray-master/rllib/examples

Train

  • Transductive setting (dataset is in [example_15, example_50, example_100, EU])

    • Run the experiment on optimizing the BA-15 dataset with alpha=0, risilience metric R, node degree-based attack:

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of the filtration order (set to -3):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-3  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of alpha (the coefficient of weighted sum of resilience and utility) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=-1 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      
    • Optimize the BA-15 dataset with a grid search of robust-measure (resilience metric, choice is [R, sr, ac]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=-1 --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • Optimize the BA-15 dataset with a grid search of second-obj-func (utility metric, choice is [ge, le]) (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=-1 --seed=-1 
      
    • Optimize the BA-15 dataset with a grid search of seed (set to -1):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=example_15 --tasks-per-gpu=2 --gpus_per_instance=2 --bs=4096 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=-1 
      
    • Optimize the EU dataset (increase bs and hidden_dim if more gpus are available. Four gpus would be better for hidden_dim=64):

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=EU --tasks-per-gpu=1 --gpus_per_instance=2 --bs=1024 --mini-bs=256 --filtration_order=1 --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=32 --attack_strategy=degree --second-obj-func=ge --seed=0  
      
  • Inductive setting (dataset is in [ba_small_30, ba_mixed])

    • for the ba_small_30 dataset (use full filtration)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_small_30 --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=-1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0 
      
    • for the ba_mixed dataset (set filtratio_order to 1, tasks-per-gpu to 1 and bs to 2048)

      CUDA_VISIBLE_DEVICES=0,1 python autoregressivegraph_decouple_action_dist_dppo.py --num-gpus=2 --cwd-path=./ --stop-iters=2000 --stop-timesteps=800000 --dataset=ba_mixed --tasks-per-gpu=1 --gpus_per_instance=2 --bs=2048 --mini-bs=256 --filtration_order=1  --alpha=0 --robust-measure=R --reward_scale=10 --dual_clip_param=10 --lr=7e-4 --vf_lr=7e-4 --ppo_alg=dcppo --hidden_dim=64 --attack_strategy=degree --second-obj-func=ge --seed=0
      

We highly recommend using tensorboard to monitor the training process. To do this, you may run

tensorboard --logdir log/DDPPO

Set checkpoint_freq to be non-zero (zero by default) if you want to save the trained models during the training process. And the final trained model will be saved by default when the training is done. All trained models and tensorboard logs are saved in the folder log/DDPPO/.

Test

  • BA-15 (dataset is in [example_15, example_50, example_100, EU, ba_small_30, ba_mixed]) (The problem setting related hyperparameters need to be consistent with the values used in training.)
    CUDA_VISIBLE_DEVICES=0,1 python evaluate_trained_agent_dppo.py --num-gpus=2 --tasks-per-gpu=1 --bs=400 --mini-bs=16 --gpus_per_instance=1 --ppo_alg=dcppo --attack_strategy=degree --second-obj-func=le --seed=0 --reward_scale=1 --test_num=-1 --cwd-path=./test  --alpha=0.5 --dataset=example_15 --filtration_order=-1  --robust-measure=ac --hidden_dim=64
    
    Remember to set the restore_path in evaluate_trained_agent_dppo.py (Line 26) to the trained model folder.
Owner
Shanchao Yang
PhD student at CUHK-Shenzhen; Graph learning & Reinforcement learning
Shanchao Yang
A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented in Python.

Reinforcement-Learning-Notebooks A collection of Reinforcement Learning algorithms from Sutton and Barto's book and other research papers implemented

Pulkit Khandelwal 1k Dec 28, 2022
PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Representation

How to Reproduce our Results This repository contains PyTorch implementation code for the paper MixCo: Mix-up Contrastive Learning for Visual Represen

opcrisis 46 Dec 15, 2022
Bottom-up Human Pose Estimation

Introduction This is the official code of Rethinking the Heatmap Regression for Bottom-up Human Pose Estimation. This paper has been accepted to CVPR2

108 Dec 01, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
ReSSL: Relational Self-Supervised Learning with Weak Augmentation

ReSSL: Relational Self-Supervised Learning with Weak Augmentation This repository contains PyTorch evaluation code, training code and pretrained model

mingkai 45 Oct 25, 2022
Course content and resources for the AIAIART course.

AIAIART course This repo will house the notebooks used for the AIAIART course. Part 1 (first four lessons) ran via Discord in September/October 2021.

Jonathan Whitaker 492 Jan 06, 2023
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
OpenLT: An open-source project for long-tail classification

OpenLT: An open-source project for long-tail classification Supported Methods for Long-tailed Recognition: Cross-Entropy Loss Focal Loss (ICCV'17) Cla

Ming Li 37 Sep 15, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting

RATCHET: RAdiological Text Captioning for Human Examined Thoraxes RATCHET is a Medical Transformer for Chest X-ray Diagnosis and Reporting. Based on t

26 Nov 14, 2022