This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Related tags

Deep LearningLADE
Overview

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021)

Install

conda create -n longtail pip python=3.7 -y
source activate longtail
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
pip install pyyaml tqdm matplotlib sklearn h5py tensorboard

Training

Preliminaries

  • Download pretrained caffe resnet152 model for Places-LT: please refer to link.

  • Prepare dataset: CIFAR-100, Places-LT, ImageNet-LT, iNaturalist 2018

    • Please download those datasets following Decoupling.

CIFAR-100 training

For CIFAR-100 with imbalance ratio 0.01, using LADE:

python main.py --seed 1 --cfg config/CIFAR100_LT/lade.yaml --exp_name lade2021/cifar100_imb0.01_lade --cifar_imb_ratio 0.01 --remine_lambda 0.01 --alpha 0.1 --gpu 0

Places-LT training

For PC Softmax:

python main.py --seed 1 --cfg config/Places_LT/ce.yaml --exp_name lade2021/places_pc_softmax --lr 0.05 --gpu 0,1,2,3

For LADE:

python main.py --seed 1 --cfg config/Places_LT/lade.yaml --exp_name lade2021/places_lade --lr 0.05 --remine_lambda 0.1 --alpha 0.005 --gpu 0,1,2,3

ImageNet-LT training

For LADE:

python main.py --seed 1 --cfg config/ImageNet_LT/lade.yaml  --exp_name lade2021/imagenet_lade --lr 0.05 --remine_lambda 0.5 --alpha 0.05 --gpu 0,1,2,3

iNaturalist18 training

For LADE:

python main.py --seed 1 --cfg ./config/iNaturalist18/lade.yaml --exp_name lade2021/inat_lade --lr 0.1 --alpha 0.05 --gpu 0,1,2,3

Evaluate on shifted test set & Confidence calibration

For Imagenet (Section 4.3, 4.4):

./notebooks/imagenet-shift-calib.ipynb

For CIFAR-100 (Supplementary material):

./notebooks/cifar100-shift-calib.ipynb

License

The use of this software is released under BSD-3.

Citation

If you find our paper or this project helps your research, please kindly consider citing our paper in your publications.

@article{hong2020disentangling,
  title={Disentangling Label Distribution for Long-tailed Visual Recognition},
  author={Hong, Youngkyu and Han, Seungju and Choi, Kwanghee and Seo, Seokjun and Kim, Beomsu and Chang, Buru},
  journal={arXiv preprint arXiv:2012.00321},
  year={2020}
}
Owner
Hyperconnect
Hyperconnect Inc
Hyperconnect
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape

Metashape-Utils This repository allows the user to automatically scale a 3D model/mesh/point cloud on Agisoft Metashape, given a set of 2D coordinates

INSCRIBE 4 Nov 07, 2022
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Fast sparse deep learning on CPUs

SPARSEDNN **If you want to use this repo, please send me an email: [email pro

Ziheng Wang 44 Nov 30, 2022
Code for paper "Multi-level Disentanglement Graph Neural Network"

Multi-level Disentanglement Graph Neural Network (MD-GNN) This is a PyTorch implementation of the MD-GNN, and the code includes the following modules:

Lirong Wu 6 Dec 29, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | ์žฅ์š”์—˜ 163 Dec 26, 2022
Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

Amir Shahroudy 578 Dec 30, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track ๐Ÿ˜ƒ More c

minerva.ml 46 Jun 22, 2022
Implementation of parameterized soft-exponential activation function.

Soft-Exponential-Activation-Function: Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are

Shuvrajeet Das 1 Feb 23, 2022
Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing

EGFNet Edge-aware Guidance Fusion Network for RGB-Thermal Scene Parsing Dataset and Results Test maps: ็™พๅบฆ็ฝ‘็›˜ ๆๅ–็ ๏ผšzust Citation @ARTICLE{ author={Zhou,

ShaohuaDong 10 Dec 08, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
An introduction to satellite image analysis using Python + OpenCV and JavaScript + Google Earth Engine

A Gentle Introduction to Satellite Image Processing Welcome to this introductory course on Satellite Image Analysis! Satellite imagery has become a pr

Edward Oughton 32 Jan 03, 2023
Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Python Assignments for the Deep Learning lectures by Andrew NG on coursera with complete submission for grading capability.

Utkarsh Agiwal 1 Feb 03, 2022