This repository contains code for the paper "Disentangling Label Distribution for Long-tailed Visual Recognition", published at CVPR' 2021

Related tags

Deep LearningLADE
Overview

Disentangling Label Distribution for Long-tailed Visual Recognition (CVPR 2021)

Install

conda create -n longtail pip python=3.7 -y
source activate longtail
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
pip install pyyaml tqdm matplotlib sklearn h5py tensorboard

Training

Preliminaries

  • Download pretrained caffe resnet152 model for Places-LT: please refer to link.

  • Prepare dataset: CIFAR-100, Places-LT, ImageNet-LT, iNaturalist 2018

    • Please download those datasets following Decoupling.

CIFAR-100 training

For CIFAR-100 with imbalance ratio 0.01, using LADE:

python main.py --seed 1 --cfg config/CIFAR100_LT/lade.yaml --exp_name lade2021/cifar100_imb0.01_lade --cifar_imb_ratio 0.01 --remine_lambda 0.01 --alpha 0.1 --gpu 0

Places-LT training

For PC Softmax:

python main.py --seed 1 --cfg config/Places_LT/ce.yaml --exp_name lade2021/places_pc_softmax --lr 0.05 --gpu 0,1,2,3

For LADE:

python main.py --seed 1 --cfg config/Places_LT/lade.yaml --exp_name lade2021/places_lade --lr 0.05 --remine_lambda 0.1 --alpha 0.005 --gpu 0,1,2,3

ImageNet-LT training

For LADE:

python main.py --seed 1 --cfg config/ImageNet_LT/lade.yaml  --exp_name lade2021/imagenet_lade --lr 0.05 --remine_lambda 0.5 --alpha 0.05 --gpu 0,1,2,3

iNaturalist18 training

For LADE:

python main.py --seed 1 --cfg ./config/iNaturalist18/lade.yaml --exp_name lade2021/inat_lade --lr 0.1 --alpha 0.05 --gpu 0,1,2,3

Evaluate on shifted test set & Confidence calibration

For Imagenet (Section 4.3, 4.4):

./notebooks/imagenet-shift-calib.ipynb

For CIFAR-100 (Supplementary material):

./notebooks/cifar100-shift-calib.ipynb

License

The use of this software is released under BSD-3.

Citation

If you find our paper or this project helps your research, please kindly consider citing our paper in your publications.

@article{hong2020disentangling,
  title={Disentangling Label Distribution for Long-tailed Visual Recognition},
  author={Hong, Youngkyu and Han, Seungju and Choi, Kwanghee and Seo, Seokjun and Kim, Beomsu and Chang, Buru},
  journal={arXiv preprint arXiv:2012.00321},
  year={2020}
}
Owner
Hyperconnect
Hyperconnect Inc
Hyperconnect
Tensorflow implementation of Swin Transformer model.

Swin Transformer (Tensorflow) Tensorflow reimplementation of Swin Transformer model. Based on Official Pytorch implementation. Requirements tensorflow

167 Jan 08, 2023
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
๐Ÿ˜ฎThe official implementation of "CoNeRF: Controllable Neural Radiance Fields" ๐Ÿ˜ฎ

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
chainladder - Property and Casualty Loss Reserving in Python

chainladder (python) chainladder - Property and Casualty Loss Reserving in Python This package gets inspiration from the popular R ChainLadder package

Casualty Actuarial Society 130 Dec 07, 2022
Unofficial TensorFlow implementation of the Keyword Spotting Transformer model

Keyword Spotting Transformer This is the unofficial TensorFlow implementation of the Keyword Spotting Transformer model. This model is used to train o

Intelligent Machines Limited 8 May 11, 2022
Tensorflow 2 implementations of the C-SimCLR and C-BYOL self-supervised visual representation methods from "Compressive Visual Representations" (NeurIPS 2021)

Compressive Visual Representations This repository contains the source code for our paper, Compressive Visual Representations. We developed informatio

Google Research 30 Nov 23, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Deeper DCGAN with AE stabilization

AEGeAN Deeper DCGAN with AE stabilization Parallel training of generative adversarial network as an autoencoder with dedicated losses for each stage.

Tyler Kvochick 36 Feb 17, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory โ”œโ”€โ”€ README.md

Chi Bui 113 Dec 29, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Zhe Niu 28 Dec 19, 2022
This repository contains the source code of our work on designing efficient CNNs for computer vision

Efficient networks for Computer Vision This repo contains source code of our work on designing efficient networks for different computer vision tasks:

Sachin Mehta 386 Nov 26, 2022
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021