Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Overview

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

The task of age transformation illustrates the change of an individual's appearance over time. Accurately modeling this complex transformation over an input facial image is extremely challenging as it requires making convincing and possibly large changes to facial features and head shape, while still preserving the input identity. In this work, we present an image-to-image translation method that learns to directly encode real facial images into the latent space of a pre-trained unconditional GAN (e.g., StyleGAN) subject to a given aging shift. We employ a pre-trained age regression network used to explicitly guide the encoder to generate the latent codes corresponding to the desired age. In this formulation, our method approaches the continuous aging process as a regression task between the input age and desired target age, providing fine-grained control on the generated image. Moreover, unlike other approaches that operate solely in the latent space using a prior on the path controlling age, our method learns a more disentangled, non-linear path. We demonstrate that the end-to-end nature of our approach, coupled with the rich semantic latent space of StyleGAN, allows for further editing of the generated images. Qualitative and quantitative evaluations show the advantages of our method compared to state-of-the-art approaches.

Description

Official Implementation of our Style-based Age Manipulation (SAM) paper for both training and evaluation. SAM allows modeling fine-grained age transformation using a single input facial image

Getting Started

Prerequisites

  • Linux or macOS
  • NVIDIA GPU + CUDA CuDNN (CPU may be possible with some modifications, but is not inherently supported)
  • Python 3

Installation

  • Dependencies:
    We recommend running this repository using Anaconda. All dependencies for defining the environment are provided in environment/sam_env.yaml.

Pretrained Models

Please download the pretrained aging model from the following links.

Path Description
SAM SAM trained on the FFHQ dataset for age transformation.

In addition, we provide various auxiliary models needed for training your own SAM model from scratch.
This includes the pretrained pSp encoder model for generating the encodings of the input image and the aging classifier used to compute the aging loss during training.

Path Description
pSp Encoder pSp taken from pixel2style2pixel trained on the FFHQ dataset for StyleGAN inversion.
FFHQ StyleGAN StyleGAN model pretrained on FFHQ taken from rosinality with 1024x1024 output resolution.
IR-SE50 Model Pretrained IR-SE50 model taken from TreB1eN for use in our ID loss during training.
VGG Age Classifier VGG age classifier from DEX and fine-tuned on the FFHQ-Aging dataset for use in our aging loss

By default, we assume that all auxiliary models are downloaded and saved to the directory pretrained_models. However, you may use your own paths by changing the necessary values in configs/path_configs.py.

Training

Preparing your Data

Please refer to configs/paths_config.py to define the necessary data paths and model paths for training and inference.
Then, refer to configs/data_configs.py to define the source/target data paths for the train and test sets as well as the transforms to be used for training and inference.

As an example, we can first go to configs/paths_config.py and define:

dataset_paths = {
    'ffhq': '/path/to/ffhq/images256x256'
    'celeba_test': '/path/to/CelebAMask-HQ/test_img',
}

Then, in configs/data_configs.py, we define:

DATASETS = {
	'ffhq_aging': {
		'transforms': transforms_config.AgingTransforms,
		'train_source_root': dataset_paths['ffhq'],
		'train_target_root': dataset_paths['ffhq'],
		'test_source_root': dataset_paths['celeba_test'],
		'test_target_root': dataset_paths['celeba_test'],
	}
}

When defining the datasets for training and inference, we will use the values defined in the above dictionary.

Training SAM

The main training script can be found in scripts/train.py.
Intermediate training results are saved to opts.exp_dir. This includes checkpoints, train outputs, and test outputs.
Additionally, if you have tensorboard installed, you can visualize tensorboard logs in opts.exp_dir/logs.

Training SAM with the settings used in the paper can be done by running the following command:

python scripts/train.py \
--dataset_type=ffhq_aging \
--exp_dir=/path/to/experiment \
--workers=6 \
--batch_size=6 \
--test_batch_size=6 \
--test_workers=6 \
--val_interval=2500 \
--save_interval=10000 \
--start_from_encoded_w_plus \
--id_lambda=0.1 \
--lpips_lambda=0.1 \
--lpips_lambda_aging=0.1 \
--lpips_lambda_crop=0.6 \
--l2_lambda=0.25 \
--l2_lambda_aging=0.25 \
--l2_lambda_crop=1 \
--w_norm_lambda=0.005 \
--aging_lambda=5 \
--cycle_lambda=1 \
--input_nc=4 \
--target_age=uniform_random \
--use_weighted_id_loss

Additional Notes

  • See options/train_options.py for all training-specific flags.
  • Note that using the flag --start_from_encoded_w_plus requires you to specify the path to the pretrained pSp encoder.
    By default, this path is taken from configs.paths_config.model_paths['pretrained_psp'].
  • If you wish to resume from a specific checkpoint (e.g. a pretrained SAM model), you may do so using --checkpoint_path.

Notebooks

Inference Notebook

To help visualize the results of SAM we provide a Jupyter notebook found in notebooks/inference_playground.ipynb.
The notebook will download the pretrained aging model and run inference on the images found in notebooks/images.

MP4 Notebook

To show full lifespan results using SAM we provide an additional notebook notebooks/animation_inference_playground.ipynb that will run aging on multiple ages between 0 and 100 and interpolate between the results to display full aging. The results will be saved as an MP4 files in notebooks/animations showing the aging and de-aging results.

Testing

Inference

Having trained your model or if you're using a pretrained SAM model, you can use scripts/inference.py to run inference on a set of images.
For example,

python scripts/inference.py \
--exp_dir=/path/to/experiment \
--checkpoint_path=experiment/checkpoints/best_model.pt \
--data_path=/path/to/test_data \
--test_batch_size=4 \
--test_workers=4 \
--couple_outputs
--target_age=0,10,20,30,40,50,60,70,80

Additional notes to consider:

  • During inference, the options used during training are loaded from the saved checkpoint and are then updated using the test options passed to the inference script.
  • Adding the flag --couple_outputs will save an additional image containing the input and output images side-by-side in the sub-directory inference_coupled. Otherwise, only the output image is saved to the sub-directory inference_results.
  • In the above example, we will run age transformation with target ages 0,10,...,80.
    • The results of each target age are saved to the sub-directories inference_results/TARGET_AGE and inference_coupled/TARGET_AGE.
  • By default, the images will be saved at resolution of 1024x1024, the original output size of StyleGAN.
    • If you wish to save outputs resized to resolutions of 256x256, you can do so by adding the flag --resize_outputs.

Side-by-Side Inference

The above inference script will save each aging result in a different sub-directory for each target age. Sometimes, however, it is more convenient to save all aging results of a given input side-by-side like the following:

To do so, we provide a script inference_side_by_side.py that works in a similar manner as the regular inference script:

python scripts/inference_side_by_side.py \
--exp_dir=/path/to/experiment \
--checkpoint_path=experiment/checkpoints/best_model.pt \
--data_path=/path/to/test_data \
--test_batch_size=4 \
--test_workers=4 \
--target_age=0,10,20,30,40,50,60,70,80

Here, all aging results 0,10,...,80 will be save side-by-side with the original input image.

Reference-Guided Inference

In the paper, we demonstrated how one can perform style-mixing on the fine-level style inputs with a reference image to control global features such as hair color. For example,

To perform style mixing using reference images, we provide the script reference_guided_inference.py. Here, we first perform aging using the specified target age(s). Then, style mixing is performed using the specified reference images and the specified layers. For example, one can run:

python scripts/reference_guided_inference.py \
--exp_dir=/path/to/experiment \
--checkpoint_path=experiment/checkpoints/best_model.pt \
--data_path=/path/to/test_data \
--test_batch_size=4 \
--test_workers=4 \
--ref_images_paths_file=/path/to/ref_list.txt \
--latent_mask=8,9 \
--target_age=50,60,70,80

Here, the reference images should be specified in the file defined by --ref_images_paths_file and should have the following format:

/path/to/reference/1.jpg
/path/to/reference/2.jpg
/path/to/reference/3.jpg
/path/to/reference/4.jpg
/path/to/reference/5.jpg

In the above example, we will aging using 4 different target ages. For each target age, we first transform the test samples defined by --data_path and then perform style mixing on layers 8,9 defined by --latent_mask. The results of each target age are saved in its own sub-directory.

Style Mixing

Instead of performing style mixing using a reference image, you can perform style mixing using randomly generated w latent vectors by running the script style_mixing.py. This script works in a similar manner to the reference guided inference except you do not need to specify the --ref_images_paths_file flag.

Repository structure

Path Description
SAM Repository root folder
├  configs Folder containing configs defining model/data paths and data transforms
├  criteria Folder containing various loss criterias for training
├  datasets Folder with various dataset objects and augmentations
├  docs Folder containing images displayed in the README
├  environment Folder containing Anaconda environment used in our experiments
├ models Folder containing all the models and training objects
│  ├  encoders Folder containing various architecture implementations
│  ├  stylegan2 StyleGAN2 model from rosinality
│  ├  psp.py Implementation of pSp encoder
│  └  dex_vgg.py Implementation of DEX VGG classifier used in computation of aging loss
├  notebook Folder with jupyter notebook containing SAM inference playground
├  options Folder with training and test command-line options
├  scripts Folder with running scripts for training and inference
├  training Folder with main training logic and Ranger implementation from lessw2020
├  utils Folder with various utility functions

Credits

StyleGAN2 model and implementation:
https://github.com/rosinality/stylegan2-pytorch
Copyright (c) 2019 Kim Seonghyeon
License (MIT) https://github.com/rosinality/stylegan2-pytorch/blob/master/LICENSE

IR-SE50 model and implementations:
https://github.com/TreB1eN/InsightFace_Pytorch
Copyright (c) 2018 TreB1eN
License (MIT) https://github.com/TreB1eN/InsightFace_Pytorch/blob/master/LICENSE

Ranger optimizer implementation:
https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer
License (Apache License 2.0) https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer/blob/master/LICENSE

LPIPS model and implementation:
https://github.com/S-aiueo32/lpips-pytorch
Copyright (c) 2020, Sou Uchida
License (BSD 2-Clause) https://github.com/S-aiueo32/lpips-pytorch/blob/master/LICENSE

DEX VGG model and implementation:
https://github.com/InterDigitalInc/HRFAE
Copyright (c) 2020, InterDigital R&D France
https://github.com/InterDigitalInc/HRFAE/blob/master/LICENSE.txt

pSp model and implementation:
https://github.com/eladrich/pixel2style2pixel
Copyright (c) 2020 Elad Richardson, Yuval Alaluf
https://github.com/eladrich/pixel2style2pixel/blob/master/LICENSE

Acknowledgments

This code borrows heavily from pixel2style2pixel

Citation

If you use this code for your research, please cite our paper Only a Matter of Style: Age Transformation Using a Style-Based Regression Model:

@misc{alaluf2021matter,
      title={Only a Matter of Style: Age Transformation Using a Style-Based Regression Model}, 
      author={Yuval Alaluf and Or Patashnik and Daniel Cohen-Or},
      year={2021},
      eprint={2102.02754},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Computer vision research scientist and enthusiast
Top #1 Submission code for the first https://alphamev.ai MEV competition with best AUC (0.9893) and MSE (0.0982).

alphamev-winning-submission Top #1 Submission code for the first alphamev MEV competition with best AUC (0.9893) and MSE (0.0982). The code won't run

70 Oct 29, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Arxiv harvester - Poor man's simple harvester for arXiv resources

Poor man's simple harvester for arXiv resources This modest Python script takes

Patrice Lopez 5 Oct 18, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
Generalized Data Weighting via Class-level Gradient Manipulation

Generalized Data Weighting via Class-level Gradient Manipulation This repository is the official implementation of Generalized Data Weighting via Clas

18 Nov 12, 2022
Official codebase for Pretrained Transformers as Universal Computation Engines.

universal-computation Overview Official codebase for Pretrained Transformers as Universal Computation Engines. Contains demo notebook and scripts to r

Kevin Lu 210 Dec 28, 2022
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
paper: Hyperspectral Remote Sensing Image Classification Using Deep Convolutional Capsule Network

DC-CapsNet This is a tensorflow and keras based implementation of DC-CapsNet for HSI in the Remote Sensing Letters R. Lei et al., "Hyperspectral Remot

LEI 7 Nov 29, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Deep Learning GPU Training System

DIGITS DIGITS (the Deep Learning GPU Training System) is a webapp for training deep learning models. The currently supported frameworks are: Caffe, To

NVIDIA Corporation 4.1k Jan 03, 2023
A lightweight Python-based 3D network multi-agent simulator. Uses a cell-based congestion model. Calculates risk, loudness and battery capacities of the agents. Suitable for 3D network optimization tasks.

AMAZ3DSim AMAZ3DSim is a lightweight python-based 3D network multi-agent simulator. It uses a cell-based congestion model. It calculates risk, battery

Daniel Hirsch 13 Nov 04, 2022
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
A TensorFlow Implementation of "Deep Multi-Scale Video Prediction Beyond Mean Square Error" by Mathieu, Couprie & LeCun.

Adversarial Video Generation This project implements a generative adversarial network to predict future frames of video, as detailed in "Deep Multi-Sc

Matt Cooper 704 Nov 26, 2022
Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image

NonCuboidRoom Paper Learning to Reconstruct 3D Non-Cuboid Room Layout from a Single RGB Image Cheng Yang*, Jia Zheng*, Xili Dai, Rui Tang, Yi Ma, Xiao

67 Dec 15, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022