MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

Related tags

Deep LearningMatchGAN
Overview

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

This repository is the official implementation of MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network.

alt text

This repository is built upon the framework of StarGAN.

1. Cloning the repository

Clone the repository and navigate to it.

$ git clone https://github.com/justin941208/MatchGAN.git
$ cd MatchGAN/

2. Installing requirements

The following libraries should be separately installed. Instructions are available on their respective websites:

Additional requirements can be installed by running:

pip install -r requirements.txt

To evaluate MatchGAN using GAN-train and GAN-test, the following files should be downloaded and unzipped directly under MatchGAN/.

2. Downloading the datasets

To download the CelebA dataset:

$ bash download.sh

In addition, the partition file list_eval_partition.txt should be downloaded from the official CelebA google drive and placed immediately under the directory ./data/celeba/.

To download the RaFD dataset, one must request access to the dataset from the Radboud Faces Database website. Once all the image files are obtained, they need to be placed under the subdirectory ./data/RaFD/data. To preprocess the dataset, run the following command:

$ python preprocess_rafd.py

This will crop all images to 256x256 (centred on face) and split the data into 90% for training and 10% for testing.

3. Training

The command format for training MatchGAN is given by:

$ ./run [dataset] [mode] [labelled percentage] [device]

For example, to train MatchGAN on CelebA with 5% of the training examples labelled on GPU 0, run the following command:

$ ./run celeba train 5 0

To train on RaFD, simply replace "celeba" by "rafd".

4. Testing and evaluating

To test MatchGAN following the above example on CelebA, run the command

$ ./run celeba test 5 0

This will generate synthetic images from the test set and save them to the directory ./matchgan_celeba/results.

To evaluate the model using Frechet Inception Distance (FID), Inception Score (IS), and GAN-test, run the following command:

$ ./run celeba eval 5 0

The following commands trains an external classifier using the synthetic images generated by MatchGAN and then evaluates GAN-train.

$ ./run celeba synth 5 0
$ ./run celeba synth_test 5 0

5. Pretrained model

Pretrained models of MatchGAN (generator only) can be downloaded from this link. To test or evaluate these models, the checkpoint file 200000-G.ckpt should be placed under the directory ./matchgan_celeba/models (for CelebA) or ./matchgan_rafd/models (for RaFD) before running the relevant commands detailed above.

6. Results

Here are some of the results of our pre-trained model from the previous section.

FID

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 12.31 9.34 8.81 6.34 - 5.58
RaFD - - 22.75 9.94 6.65 5.06

IS

Percentage of training data labelled 1% 5% 10% 20% 50% 100%
CelebA 2.95 2.95 2.99 3.03 - 3.07
RaFD - - 1.64 1.61 1.59 1.58

GAN-train and GAN-test

These numbers are obtained under the 100% setup.

GAN-train GAN-test
CelebA 87.43% 82.26%
RaFD 97.78% 75.95%
Owner
Justin Sun
PhD student
Justin Sun
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
An addon uses SMPL's poses and global translation to drive cartoon character in Blender.

Blender addon for driving character The addon drives the cartoon character by passing SMPL's poses and global translation into model's armature in Ble

犹在镜中 153 Dec 14, 2022
A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation

##A tensorflow implementation of Fully Convolutional Networks For Semantic Segmentation. #USAGE To run the trained classifier on some images: python w

Alex Seewald 13 Nov 17, 2022
PyTorch Implementation of PIXOR: Real-time 3D Object Detection from Point Clouds

PIXOR: Real-time 3D Object Detection from Point Clouds This is a custom implementation of the paper from Uber ATG using PyTorch 1.0. It represents the

Philip Huang 270 Dec 14, 2022
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
TCPNet - Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition

Temporal-attentive-Covariance-Pooling-Networks-for-Video-Recognition This is an implementation of TCPNet. Introduction For video recognition task, a g

Zilin Gao 21 Dec 08, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022
Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking

Part-aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking Part-Aware Measurement for Robust Multi-View Multi-Human 3D P

19 Oct 27, 2022
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

powerycy 40 Dec 14, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 28 Nov 25, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Baseline inference Algorithm for the STOIC2021 challenge.

STOIC2021 Baseline Algorithm This codebase contains an example submission for the STOIC2021 COVID-19 AI Challenge. As a baseline algorithm, it impleme

Luuk Boulogne 10 Aug 08, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
Analyzing basic network responses to novel classes

novelty-detection Analyzing how AlexNet responds to novel classes with varying degrees of similarity to pretrained classes from ImageNet. If you find

Noam Eshed 34 Oct 02, 2022