Count GitHub Stars ⭐

Overview

Count GitHub Stars per Day

Track GitHub stars per day over a date range to measure the open-source popularity of different repositories.

Requirements

PyGitHub is required to access the GitHub REST API via Python. This library enables you to manage GitHub resources such as repositories, user profiles, and organizations in your Python applications.

pip install PyGithub

Usage

Update TOKEN to a valid GitHub access token in count_stars.py L15 and then run:

python count_stars.py

Result

When run on April 10th, 2022 result is:

Counting stars for last 30.0 days from 02 May 2022

ultralytics/yolov5                      1572 stars  (52.4/day)  :   6%|| 1572/25683 [00:16<04:15, 94.53it/s]
facebookresearch/detectron2             391 stars   (13.0/day)  :   2%|| 391/20723 [00:04<03:56, 85.86it/s]
deepmind/deepmind-research              165 stars   (5.5/day)   :   2%|| 165/10079 [00:01<01:50, 89.52it/s]
aws/amazon-sagemaker-examples           120 stars   (4.0/day)   :   2%|| 120/6830 [00:02<02:16, 49.17it/s]
awslabs/autogluon                       127 stars   (4.2/day)   :   3%|| 127/4436 [00:01<01:00, 71.45it/s]
microsoft/LightGBM                      122 stars   (4.1/day)   :   1%|          | 122/13730 [00:01<03:10, 71.54it/s]
openai/gpt-3                            95 stars    (3.2/day)   :   1%|          | 95/11225 [00:01<03:34, 52.00it/s]
apple/turicreate                        40 stars    (1.3/day)   :   0%|          | 40/10676 [00:00<02:24, 73.59it/s]
apple/coremltools                       41 stars    (1.4/day)   :   2%|| 41/2641 [00:00<00:46, 56.00it/s]
google/automl                           55 stars    (1.8/day)   :   1%|          | 55/4991 [00:00<01:25, 57.53it/s]
google-research/google-research         548 stars   (18.3/day)  :   2%|| 548/23087 [00:07<05:11, 72.37it/s]
google-research/vision_transformer      279 stars   (9.3/day)   :   6%|| 279/5043 [00:02<00:49, 95.93it/s]
google-research/bert                    283 stars   (9.4/day)   :   1%|          | 283/31066 [00:03<07:01, 73.11it/s]
NVlabs/stylegan3                        158 stars   (5.3/day)   :   4%|| 158/4045 [00:01<00:44, 86.41it/s]
Tencent/ncnn                            278 stars   (9.3/day)   :   2%|| 278/14440 [00:03<02:41, 87.55it/s]
Megvii-BaseDetection/YOLOX              273 stars   (9.1/day)   :   4%|| 273/6286 [00:02<01:04, 92.53it/s]
PaddlePaddle/Paddle                     239 stars   (8.0/day)   :   1%|| 239/18086 [00:02<03:33, 83.73it/s]
rwightman/pytorch-image-models          772 stars   (25.7/day)  :   4%|| 772/18169 [00:08<03:21, 86.24it/s]
streamlit/streamlit                     375 stars   (12.5/day)  :   2%|| 375/18834 [00:03<03:07, 98.67it/s]
explosion/spaCy                         234 stars   (7.8/day)   :   1%|          | 234/23249 [00:02<03:47, 101.24it/s]
PyTorchLightning/pytorch-lightning      407 stars   (13.6/day)  :   2%|| 407/18246 [00:04<03:02, 97.83it/s]
ray-project/ray                         545 stars   (18.2/day)  :   3%|| 545/20228 [00:05<03:03, 107.33it/s]
fastai/fastai                           136 stars   (4.5/day)   :   1%|          | 136/22202 [00:01<04:28, 82.22it/s]
AlexeyAB/darknet                        248 stars   (8.3/day)   :   1%|| 248/18993 [00:02<03:40, 84.84it/s]
pjreddie/darknet                        201 stars   (6.7/day)   :   1%|          | 201/22651 [00:02<05:13, 71.62it/s]
WongKinYiu/yolor                        92 stars    (3.1/day)   :   6%|| 92/1559 [00:01<00:16, 87.69it/s]
wandb/client                            66 stars    (2.2/day)   :   2%|| 66/3853 [00:00<00:46, 82.16it/s]
Deci-AI/super-gradients                 74 stars    (2.5/day)   :  19%|█▉        | 74/380 [00:00<00:03, 96.71it/s]
neuralmagic/sparseml                    105 stars   (3.5/day)   :  11%|| 105/947 [00:01<00:08, 101.97it/s]
mosaicml/composer                       247 stars   (8.2/day)   :  19%|█▉        | 247/1306 [00:02<00:10, 104.76it/s]
nebuly-ai/nebullvm                      205 stars   (6.8/day)   :  20%|█▉        | 205/1045 [00:02<00:08, 97.46it/s]
Done in 125.7s
Owner
Ultralytics
YOLOv5 🚀 and Vision AI ⭐
Ultralytics
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
The source codes for ACL 2021 paper 'BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data'

BoB: BERT Over BERT for Training Persona-based Dialogue Models from Limited Personalized Data This repository provides the implementation details for

124 Dec 27, 2022
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
MIRACLE (Missing data Imputation Refinement And Causal LEarning)

MIRACLE (Missing data Imputation Refinement And Causal LEarning) Code Author: Trent Kyono This repository contains the code used for the "MIRACLE: Cau

van_der_Schaar \LAB 15 Dec 29, 2022
The Most Efficient Temporal Difference Learning Framework for 2048

moporgic/TDL2048+ TDL2048+ is a highly optimized temporal difference (TD) learning framework for 2048. Features Many common methods related to 2048 ar

Hung Guei 5 Nov 23, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
JumpDiff: Non-parametric estimator for Jump-diffusion processes for Python

jumpdiff jumpdiff is a python library with non-parametric Nadaraya─Watson estimators to extract the parameters of jump-diffusion processes. With jumpd

Rydin 28 Dec 10, 2022
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022