RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation

Overview

RGB-stacking πŸ›‘ 🟩 πŸ”· for robotic manipulation

BLOG | PAPER | VIDEO

Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes,
Alex X. Lee*, Coline Devin*, Yuxiang Zhou*, Thomas Lampe*, Konstantinos Bousmalis*, Jost Tobias Springenberg*, Arunkumar Byravan, Abbas Abdolmaleki, Nimrod Gileadi, David Khosid, Claudio Fantacci, Jose Enrique Chen, Akhil Raju, Rae Jeong, Michael Neunert, Antoine Laurens, Stefano Saliceti, Federico Casarini, Martin Riedmiller, Raia Hadsell, Francesco Nori.
In Conference on Robot Learning (CoRL), 2021.

The RGB environment

This repository contains an implementation of the simulation environment described in the paper "Beyond Pick-and-Place: Tackling robotic stacking of diverse shapes". Note that this is a re-implementation of the environment (to remove dependencies on internal libraries). As a result, not all the features described in the paper are available at this point. Noticeably, domain randomization is not included in this release. We also aim to provide reference performance metrics of trained policies on this environment in the near future.

In this environment, the agent controls a robot arm with a parallel gripper above a basket, which contains three objects β€” one red, one green, and one blue, hence the name RGB. The agent's task is to stack the red object on top of the blue object, within 20 seconds, while the green object serves as an obstacle and distraction. The agent controls the robot using a 4D Cartesian controller. The controlled DOFs are x, y, z and rotation around the z axis. The simulation is a MuJoCo environment built using the Modular Manipulation (MoMa) framework.

Corresponding method

The RGB-stacking paper "Beyond Pick-and-Place: Tackling robotic stacking of diverse shapes" also contains a description and thorough evaluation of our initial solution to both the 'Skill Mastery' (training on the 5 designated test triplets and evaluating on them) and the 'Skill Generalization' (training on triplets of training objects and evaluating on the 5 test triplets). Our approach was to first train a state-based policy in simulation via a standard RL algorithm (we used MPO) followed by interactive distillation of the state-based policy into a vision-based policy (using a domain randomized version of the environment) that we then deployed to the robot via zero-shot sim-to-real transfer. We finally improved the policy further via offline RL based on data collected from the sim-to-real policy (we used CRR). For details on our method and the results please consult the paper.

Installing and visualizing the environment

Please ensure that you have a working MuJoCo200 installation and a valid MuJoCo licence.

  1. Clone this repository:

    git clone https://github.com/deepmind/rgb_stacking.git
    cd rgb_stacking
  2. Prepare a Python 3 environment - venv is recommended.

    python3 -m venv rgb_stacking_venv
    source rgb_stacking_venv/bin/activate
  3. Install dependencies:

    pip install -r requirements.txt
  4. Run the environment viewer:

    python -m rgb_stacking.main

Step 2-4 can also be done by running the run.sh script:

./run.sh

Specifying the object triplet

The default environment will load with Triplet 4 (see Sect. 3.2.1 in the paper). If you wish to use a different triplet you can use the following commands:

from rgb_stacking import environment

env = environment.rgb_stacking(object_triplet=NAME_OF_SET)

The possible NAME_OF_SET are:

  • rgb_test_triplet{i} where i is one of 1, 2, 3, 4, 5: Loads test triplet i.
  • rgb_test_random: Randomly loads one of the 5 test triplets.
  • rgb_train_random: Triplet comprised of blocks from the training set.
  • rgb_heldout_random: Triplet comprised of blocks from the held-out set.

For more information on the blocks and the possible options, please refer to the rgb_objects repository.

Specifying the observation space

By default, the observations exposed by the environment are only the ones we used for training our state-based agents. To use another set of observations please use the following code snippet:

from rgb_stacking import environment

env = environment.rgb_stacking(
    observations=environment.ObservationSet.CHOSEN_SET)

The possible CHOSEN_SET are:

  • STATE_ONLY: Only the state observations, used for training expert policies from state in simulation (stage 1).
  • VISION_ONLY: Only image observations.
  • ALL: All observations.
  • INTERACTIVE_IMITATION_LEARNING: Pair of image observations and a subset of proprioception observations, used for interactive imitation learning (stage 2).
  • OFFLINE_POLICY_IMPROVEMENT: Pair of image observations and a subset of proprioception observations, used for the one-step offline policy improvement (stage 3).

Real RGB-Stacking Environment: CAD models and assembly instructions

The CAD model of the setup is available in onshape.

We also provide the following documents for the assembly of the real cell:

  • Assembly instructions for the basket.
  • Assembly instructions for the robot.
  • Assembly instructions for the cell.
  • The bill of materials of all the necessary parts.
  • A diagram with the wiring of cell.

The RGB-objects themselves can be 3D-printed using the STLs available in the rgb_objects repository.

Citing

If you use rgb_stacking in your work, please cite the accompanying paper:

@inproceedings{lee2021rgbstacking,
    title={Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes},
    author={Alex X. Lee and
            Coline Devin and
            Yuxiang Zhou and
            Thomas Lampe and
            Konstantinos Bousmalis and
            Jost Tobias Springenberg and
            Arunkumar Byravan and
            Abbas Abdolmaleki and
            Nimrod Gileadi and
            David Khosid and
            Claudio Fantacci and
            Jose Enrique Chen and
            Akhil Raju and
            Rae Jeong and
            Michael Neunert and
            Antoine Laurens and
            Stefano Saliceti and
            Federico Casarini and
            Martin Riedmiller and
            Raia Hadsell and
            Francesco Nori},
    booktitle={Conference on Robot Learning (CoRL)},
    year={2021},
    url={https://openreview.net/forum?id=U0Q8CrtBJxJ}
}
Owner
DeepMind
DeepMind
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Perspective: Julia for Biologists

Perspective: Julia for Biologists 1. Examples Speed: Example 1 - Single cell data and network inference Domain: Single cell data Methodology: Network

Elisabeth Roesch 55 Dec 02, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
This repository contains the code for the CVPR 2020 paper "Differentiable Volumetric Rendering: Learning Implicit 3D Representations without 3D Supervision"

Differentiable Volumetric Rendering Paper | Supplementary | Spotlight Video | Blog Entry | Presentation | Interactive Slides | Project Page This repos

697 Jan 06, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers.

Less is More: Pay Less Attention in Vision Transformers Official PyTorch implementation of Less is More: Pay Less Attention in Vision Transformers. By

73 Jan 01, 2023
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
constructing maps of intellectual influence from publication data

Influencemap Project @ ANU Influence in the academic communities has been an area of interest for researchers. This can be seen in the popularity of a

CS Metrics 13 Jun 18, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds BjΓΆrn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification

S-multi-SNE Supervised multi-SNE (S-multi-SNE): Multi-view visualisation and classification A repository containing the code to reproduce the findings

Theodoulos Rodosthenous 3 Apr 15, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022