利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

Overview

写在前面

利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。

默认你已经完成了 yolov5的训练过程并得到了.pt模型权值文件。

本文目的仅是带着走通流程。

注意要对应yolov5和tensorrtx的版本。

  • ./yolov5包含yolov5训练以及模型初转化阶段的代码
  • ./model_process是将.wts模型转化为.engine模型的代码
  • ./detector是利用.engine模型进行前向推理阶段的代码

我的运行环境(注意OpenCV要选择适合你的visual studio的版本等问题):

win10

Visual Studio 2019

NVIDIA GeForce RTX 2060

opencv-3.4.3-vc14_vc15

cuda_10.2.89_441.22_win10

cudnn-10.2-windows10-x64-v7.6.5.32

TensorRT-7.0.0.11.Windows10.x86_64.cuda-10.2.cudnn7.6

cmake-3.21.2-windows-x86_64

上述环境的百度云(测试10、20系列可用):

链接:https://pan.baidu.com/s/1AyaloTzLap8X2hsJBvyeBw
提取码:dwr7

其他版本下载地址:

CUDA cudnn TensorRT CMake OpenCV

环境安装:

1、安装OpenCV并配置好环境变量

2、安装CUDA

一路默认。一般的安装路径为:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2

3、安装cudnn和TensorRT

cudnn和TensorRT的安装仅是将下载的对应版本的压缩包解压并复制*.h、*.lib、*.dll到CUDA的安装路径。

1 将cuDNN压缩包解压

2 将cuda\bin中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

3 将cuda\include中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

4 将cuda\lib中的文件复制到 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib

另外,

1 将TensorRT压缩包解压

2 将 TensorRT-7.0.0.11\include中头文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\include

3 将TensorRT-7.0.0.11\lib中所有lib文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\lib\x64

4 将TensorRT-7.0.0.11\lib中所有dll文件复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.2\bin

4、安装CMake软件备用

一、将训练阶段得到的.pt模型转化为.wts中间模型

把tensorrtx里面的yolov5\gen_wts.py加入到yolov5里面,执行

python gen_wts.py -w [.pt权值文件路径] 

runs\train\exp\weights\best.pt为训练过程生成的.pt模型,生成的best.wts会保存到同目录下,此best.wts待会会用到。

cuda版本每个电脑不一样

配置好的tensorrtx,包括Cmakelist.txt的设定以及dirent.h的配置。

若使用原作者的请参照tensorrtx源码https://github.com/wang-xinyu/tensorrtx ,配置过程中会遇到一些问题,挨个解决,问题不大。

1、在yolov5目录下新建build文件夹

2、修改CMakelist.txt

add_definitions(-DAPI_EXPORTS)

3、打开CMake

​​ generate后关闭

4、yolov5/include/dirent.h

​​ 也可使用我的配置好的

二、利用Cmake软件创建VS工程

修改CMakeLists.txt中此处为你的opencv安装路径。

配置好上方两个目录之后,点击Configure,根据你的环境选择配置,

点击Gnerate,警告可忽视,

现在关闭Cmake即可。

三、wts转化为engine

VS打开刚刚在bulid目录下创建的工程。

build处vs打开,生成

问题:我的模型只识别一个类,需要更改


cd {tensorrtx}/yolov5/

// update CLASS_NUM in yololayer.h if your model is trained on custom dataset

为1

生成项目。

把之前生成的best.wts复制到build\release目录里面

cmd里面运行:

.\test.exe -s .\best.wts best.engine s

运行成功在同文件夹下面会得到best.engine转换后的文件。之后的推理过程使用的都是这个文件。

测试:

.\yolov5.exe -d best.engine .\samples

至此,流程走完。

如果想要进一步封装,可以按照我的示例。

注释掉yolov5.cpp,并取消 几个文件的注释。重新生成项目。按照你的需求更改。

Owner
Helium
Helium
G-NIA model from "Single Node Injection Attack against Graph Neural Networks" (CIKM 2021)

Single Node Injection Attack against Graph Neural Networks This repository is our Pytorch implementation of our paper: Single Node Injection Attack ag

Shuchang Tao 18 Nov 21, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Experiments for Operating Systems Lab (ETCS-352)

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Deekshant Wadhwa 0 Sep 06, 2022
Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Support Vector Machine".

On the Equivalence between Neural Network and Support Vector Machine Codes for NeurIPS 2021 paper "On the Equivalence between Neural Network and Suppo

Leslie 8 Oct 25, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
SEJE Pytorch implementation

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering. Contents Inst

0 Oct 21, 2021
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
As a part of the HAKE project, includes the reproduced SOTA models and the corresponding HAKE-enhanced versions (CVPR2020).

HAKE-Action HAKE-Action (TensorFlow) is a project to open the SOTA action understanding studies based on our Human Activity Knowledge Engine. It inclu

Yong-Lu Li 94 Nov 18, 2022
A framework for attentive explainable deep learning on tabular data

🧠 kendrite A framework for attentive explainable deep learning on tabular data 💨 Quick start kedro run 🧱 Built upon Technology Description Links ke

Marnix Koops 3 Nov 06, 2021
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
Simulation of the solar system using various nummerical methods

solar-system Simulation of the solar system using various nummerical methods Download the repo Make shure matplotlib, scipy etc. are installed execute

Caspar 7 Jul 15, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022