Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Overview

Adversarial Training Against Location-Optimized Adversarial Patches

arXiv | Paper | Code | Video | Slides

Code for the paper:

Sukrut Rao, David Stutz, Bernt Schiele. (2020) Adversarial Training Against Location-Optimized Adversarial Patches. In: Bartoli A., Fusiello A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science, vol 12539. Springer, Cham. https://doi.org/10.1007/978-3-030-68238-5_32

Setup

Requirements

  • Python 3.7 or above
  • PyTorch
  • scipy
  • h5py
  • scikit-image
  • scikit-learn

Optional requirements

To use script to convert data to HDF5 format

  • torchvision
  • Pillow
  • pandas

To use Tensorboard logging

  • tensorboard

With the exception of Python and PyTorch, all requirements can be installed directly using pip:

$ pip install -r requirements.txt

Setting the paths

In common/paths.py, set the following variables:

  • BASE_DATA: base path for datasets.
  • BASE_EXPERIMENTS: base path for trained models and perturbations after attacks.
  • BASE_LOGS: base path for tensorboard logs (if used).

Data

Data needs to be provided in the HDF5 format. To use a dataset, use the following steps:

  • In common/paths.py, set BASE_DATA to the base path where data will be stored.
  • For each dataset, create a directory named <dataset-name> in BASE_DATA
  • Place the following files in this directory:
    • train_images.h5: Training images
    • train_labels.h5: Training labels
    • test_images.h5: Test images
    • test_labels.h5: Test labels

A script create_dataset_h5.py has been provided to convert data in a comma-separated CSV file consisting of full paths to images and their corresponding labels to a HDF5 file. To use this script, first set BASE_DATA in common/paths.py. If the files containing training and test data paths and labels are train.csv and test.csv respectively, use:

$ python scripts/create_dataset_h5.py --train_csv /path/to/train.csv --test_csv /path/to/test.csv --dataset dataset_name

where dataset_name is the name for the dataset.

Training and evaluating a model

Training

To train a model, use:

$ python scripts/train.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/train.py -h

Evaluation

To evaluate a trained model, use:

$ python scripts/evaluate.py [options]

A list of available options and their descriptions can be found by using:

$ python scripts/evaluate.py -h

Using models and attacks from the paper

The following provides the arguments to use with the training and evaluation scripts to train the models and run the attacks described in the paper. The commands below assume that the dataset is named cifar10 and has 10 classes.

Models

Normal

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --cuda --mode normal --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Occlusion

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 1 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Fixed

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --location fixed --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-Rand

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-RandLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type random --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

AT-FullLO

$ python scripts/train.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --location random --exclude_box 11 11 10 10 --epsilon 0.1 --signed_grad --max_iterations 25 --optimize_location --opt_type full --stride 2 --log_dir logs --snapshot_frequency 5 --models_dir models --use_tensorboard --use_flip

Attacks

The arguments used here correspond to using 100 iterations and 30 attempts. These can be changed by appropriately setting --iterations and --attempts respectively.

AP-Fixed

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_pos 3 3 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location fixed --epsilon 0.05 --iterations 100 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-Rand

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-RandLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type random --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

AP-FullLO

$ python scripts/evaluate.py --cuda --dataset cifar10 --n_classes 10 --mask_dims 8 8 --mode adversarial --log_dir logs --models_dir models --saved_model_file model_complete_200 --attempts 30 --location random --epsilon 0.05 --iterations 100 --exclude_box 11 11 10 10 --optimize_location --opt_type full --stride 2 --signed_grad --perturbations_file perturbations --use_tensorboard

Citation

Please cite the paper as follows:

@InProceedings{Rao2020Adversarial,
author = {Sukrut Rao and David Stutz and Bernt Schiele},
title = {Adversarial Training Against Location-Optimized Adversarial Patches},
booktitle = {Computer Vision -- ECCV 2020 Workshops},
year = {2020},
editor = {Adrien Bartoli and Andrea Fusiello},
publisher = {Springer International Publishing},
address = {Cham},
pages = {429--448},
isbn = {978-3-030-68238-5}
}

Acknowledgement

This repository uses code from davidstutz/confidence-calibrated-adversarial-training.

License

Copyright (c) 2020 Sukrut Rao, David Stutz, Max-Planck-Gesellschaft

Please read carefully the following terms and conditions and any accompanying documentation before you download and/or use this software and associated documentation files (the "Software").

The authors hereby grant you a non-exclusive, non-transferable, free of charge right to copy, modify, merge, publish, distribute, and sublicense the Software for the sole purpose of performing non-commercial scientific research, non-commercial education, or non-commercial artistic projects.

Any other use, in particular any use for commercial purposes, is prohibited. This includes, without limitation, incorporation in a commercial product, use in a commercial service, or production of other artefacts for commercial purposes.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

You understand and agree that the authors are under no obligation to provide either maintenance services, update services, notices of latent defects, or corrections of defects with regard to the Software. The authors nevertheless reserve the right to update, modify, or discontinue the Software at any time.

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. You agree to cite the corresponding papers (see above) in documents and papers that report on research using the Software.

Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
Hand Gesture Volume Control | Open CV | Computer Vision

Gesture Volume Control Hand Gesture Volume Control | Open CV | Computer Vision Use gesture control to change the volume of a computer. First we look i

Jhenil Parihar 3 Jun 15, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
S2s2net - Sentinel-2 Super-Resolution Segmentation Network

S2S2Net Sentinel-2 Super-Resolution Segmentation Network Getting started Install

Wei Ji 10 Nov 10, 2022
A high-performance anchor-free YOLO. Exceeding yolov3~v5 with ONNX, TensorRT, NCNN, and Openvino supported.

YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. For more details, please refer to our rep

7.7k Jan 06, 2023
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
An Implementation of Transformer in Transformer in TensorFlow for image classification, attention inside local patches

Transformer-in-Transformer An Implementation of the Transformer in Transformer paper by Han et al. for image classification, attention inside local pa

Rishit Dagli 40 Jul 25, 2022
Data and code from COVID-19 machine learning paper

Machine learning approaches for localized lockdown, subnotification analysis and cases forecasting in São Paulo state counties during COVID-19 pandemi

Sara Malvar 4 Dec 22, 2022
Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONNX.

ONNX-HybridNets-Multitask-Road-Detection Python scripts for performing road segemtnation and car detection using the HybridNets multitask model in ONN

Ibai Gorordo 45 Jan 01, 2023
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Realtime Face Anti Spoofing with Face Detector based on Deep Learning using Tensorflow/Keras and OpenCV

Realtime Face Anti-Spoofing Detection 🤖 Realtime Face Anti Spoofing Detection with Face Detector to detect real and fake faces Please star this repo

Prem Kumar 86 Aug 03, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral)

Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds (CVPR 2022, Oral) This is the official implementat

Yifan Zhang 259 Dec 25, 2022
Code for classifying international patents based on the text of their titles/abstracts

Patent Classification Goal: To train a machine learning classifier that can automatically classify international patents downloaded from the WIPO webs

Prashanth Rao 1 Nov 08, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Colab notebook and additional materials for Python-driven analysis of redlining data in Philadelphia

RedliningExploration The Google Colaboratory file contained in this repository contains work inspired by a project on educational inequality in the Ph

Benjamin Warren 1 Jan 20, 2022
Multi Task Vision and Language

12-in-1: Multi-Task Vision and Language Representation Learning Please cite the following if you use this code. Code and pre-trained models for 12-in-

Facebook Research 712 Dec 19, 2022