Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Overview

Generic badge Ask Me Anything ! visitors

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always easy to detect it.

In this repo, you will find an implementation of ManTraNet, a manipulation tracing network for detection and localization of image forgeries with anomalous features. With this algorithm, you may find if an image has been falsified and even identify suspicious regions. A little example is displayed below.

It's a faifthful replica of the official implementation using however the library Pytorch. To learn more about this network, I suggest you to read the paper that describes it here.

On top of the MantraNet, there is also a file containing pre-trained weights obtained by the authors which is compatible with this pytorch version.

There is a slight discrepancy between the architecture depicted in the paper compared to the real one implemented and shared on the official repo. I put below the real architecture which is implemented here.

Please note that the rest of the README is largely inspired by the original repo.


What is ManTraNet ?

ManTraNet is an end-to-end image forgery detection and localization solution, which means it takes a testing image as input, and predicts pixel-level forgery likelihood map as output. Comparing to existing methods, the proposed ManTraNet has the following advantages:

  • Simplicity: ManTraNet needs no extra pre- and/or post-processing
  • Fast: ManTraNet puts all computations in a single network, and accepts an image of arbitrary size.
  • Robustness: ManTraNet does not rely on working assumptions other than the local manipulation assumption, i.e. some region in a testing image is modified differently from the rest.

Technically speaking, ManTraNet is composed of two sub-networks as shown below:

  • The Image Manipulation Trace Feature Extractor: It's a feature extraction network for the image manipulation classification task, which is sensitive to different manipulation types, and encodes the image manipulation in a patch into a fixed dimension feature vector.

  • The Local Anomaly Detection Network: It's a network that is designed following the intuition that we need to inspect more and more locally our extracted features if we want to be able to detect many kind of forgeries efficiently.

Where are the pre-trained weights coming from ?

  • The authors have first pretrained the Image Manipulation Trace Feature Extractor with an homemade database containing 385 types of forgeries. Unfortunately, their database is not shared publicly. Then, they trained the Anomaly Detector with four types of synthetic data, i.e. copy-move, splicing, removal, and enhancement.

Mantranet results from the composition of these two networks

The pre-trained weights available in this repo are the results of these two trainings achieved by the authors

Remarks : To train ManTraNet you need your own (relevant) datasets.

Dependency

  • Pytorch >= 1.8.1

Demo

One may simply download the repo and play with the provided ipython notebook.

N.B. :

  • Considering that there is some differences between the implementation of common functions between Tensorflow/Keras and Pytorch, some particular methods of Pytorch (like batch normalization or hardsigmoid) are re-implemented here to match perfectly with the original Tensorflow version

  • MantraNet is an architecture difficult to train without GPU/Multi-CPU. Even in "eval" mode, if you want to use it for detecting forgeries in one image it may take some minutes using only your CPU. It depends on the size of your input image.

  • There is also a slightly different version of MantraNet that uses ConvGRU instead of ConvLSTM in the repo. It enables to speed up a bit the training of the MantraNet without losing efficiency.

Citation :

@InProceedings{Wu_2019_CVPR,
author = {Wu, Yue and AbdAlmageed, Wael and Natarajan, Premkumar},
title = {ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

Study-CSRNet-pytorch This is the PyTorch version repo for CSRNet: Dilated Convolutional Neural Networks for Understanding the Highly Congested Scenes

0 Mar 01, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
Repo for FUZE project. I will also publish some Linux kernel LPE exploits for various real world kernel vulnerabilities here. the samples are uploaded for education purposes for red and blue teams.

Linux_kernel_exploits Some Linux kernel exploits for various real world kernel vulnerabilities here. More exploits are yet to come. This repo contains

Wei Wu 472 Dec 21, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding

[AAAI 2022] Negative Sample Matters: A Renaissance of Metric Learning for Temporal Grounding Official Pytorch implementation of Negative Sample Matter

Multimedia Computing Group, Nanjing University 69 Dec 26, 2022
Official implementation of EfficientPose

EfficientPose This is the official implementation of EfficientPose. We based our work on the Keras EfficientDet implementation xuannianz/EfficientDet

2 May 17, 2022
Official implementation of YOGO for Point-Cloud Processing

You Only Group Once: Efficient Point-Cloud Processing with Token Representation and Relation Inference Module By Chenfeng Xu, Bohan Zhai, Bichen Wu, T

Chenfeng Xu 67 Dec 20, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023
(NeurIPS 2020) Wasserstein Distances for Stereo Disparity Estimation

Wasserstein Distances for Stereo Disparity Estimation Accepted in NeurIPS 2020 as Spotlight. [Project Page] Wasserstein Distances for Stereo Disparity

Divyansh Garg 92 Dec 12, 2022
Image Recognition using Pytorch

PyTorch Project Template A simple and well designed structure is essential for any Deep Learning project, so after a lot practice and contributing in

Sarat Chinni 1 Nov 02, 2021
Contrastive unpaired image-to-image translation, faster and lighter training than cyclegan (ECCV 2020, in PyTorch)

Contrastive Unpaired Translation (CUT) video (1m) | video (10m) | website | paper We provide our PyTorch implementation of unpaired image-to-image tra

1.7k Dec 27, 2022
Deeper insights into graph convolutional networks for semi-supervised learning

deeper_insights_into_GCNs Deeper insights into graph convolutional networks for semi-supervised learning References data and utils.py come from Implem

Davidham3 17 Dec 16, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Implementation of CVAE. Trained CVAE on faces from UTKFace Dataset to produce synthetic faces with a given degree of happiness/smileyness.

Conditional Smiles! (SmileCVAE) About Implementation of AE, VAE and CVAE. Trained CVAE on faces from UTKFace Dataset. Using an encoding of the Smile-s

Raúl Ortega 3 Jan 09, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022