DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Overview

NVIDIA Source Code License Python 3.8

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Paper | Project page | Demo (Youtube) | Demo (Bilibili)

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
Shiyi Lan, Zhiding Yu, Chris Choy, Subhashree Radhakrishnan, Guilin Liu, Yuke Zhu, Larry Davis, Anima Anandkumar
International Conference on Computer Vision (ICCV) 2021

This repository contains the official Pytorch implementation of training & evaluation code and pretrained models for DiscoBox. DiscoBox is a state of the art framework that can jointly predict high quality instance segmentation and semantic correspondence from box annotations.

We use MMDetection v2.10.0 as the codebase.

All of our models are trained and tested using automatic mixed precision, which leverages float16 for speedup and less GPU memory consumption.

Installation

This implementation is based on PyTorch==1.9.0, mmcv==2.13.0, and mmdetection==2.10.0

Please refer to get_started.md for installation.

Or you can download the docker image from our dockerhub repository.

Models

Results on COCO val 2017

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 30.7 52.6 30.6 13.3 34.1 45.6
ResNet-101-DCN download 35.3 59.1 35.4 16.9 39.2 53.0
ResNeXt-101-DCN download 37.3 60.4 39.1 17.8 41.1 55.4

Results on COCO test-dev

We also evaluate the models in the section Results on COCO val 2017 with the same weights on COCO test-dev.

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 32.0 53.6 32.6 11.7 33.7 48.4
ResNet-101-DCN download 35.8 59.8 36.4 16.9 38.7 52.1
ResNeXt-101-DCN download 37.9 61.4 40.0 18.0 41.1 53.9

Training

COCO

ResNet-50 (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py 8

ResNet-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py 8

ResNeXt-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x.py 8

Pascal VOC 2012

ResNet-50 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_6x.py 4

ResNet-101 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_6x.py 4

Testing

COCO

ResNet-50 (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py \
     work_dirs/coco_r50_fpn_3x.pth 8 --eval segm

ResNet-101-DCN (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py \
     work_dirs/coco_r101_dcn_fpn_3x.pth 8 --eval segm

ResNeXt-101-DCN (GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x_fp16.py \
     work_dirs/coco_x101_dcn_fpn_3x.pth 8 --eval segm

Pascal VOC 2012 (COCO API)

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 --eval segm

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 --eval segm

Pascal VOC 2012 (Matlab)

Step 1: generate results

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r50_results.json"

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r101_results.json"

Step 2: format conversion

ResNet-50:

python tools/json2mat.pywork_dirs/voc_r50_results.json work_dirs/voc_r50_results.mat

ResNet-101:

python tools/json2mat.pywork_dirs/voc_r101_results.json work_dirs/voc_r101_results.mat

Step 3: evaluation

Please visit BBTP for the evaluation code written in Matlab.

PF-Pascal

Please visit this repository.

LICENSE

Please check the LICENSE file. DiscoBox may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{lan2021discobox,
  title={DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision},
  author={Lan, Shiyi and Yu, Zhiding and Choy, Christopher and Radhakrishnan, Subhashree and Liu, Guilin and Zhu, Yuke and Davis, Larry S and Anandkumar, Anima},
  journal={arXiv preprint arXiv:2105.06464},
  year={2021}
}
Owner
Shiyi Lan
PhD Candidate. Research Interests: Object Detection, Instance segmentation, 3D Object Detection, 3D vehicle trajectory, Weakly/Semi-supervised learning
Shiyi Lan
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
(CVPR2021) Kaleido-BERT: Vision-Language Pre-training on Fashion Domain

Kaleido-BERT: Vision-Language Pre-training on Fashion Domain Mingchen Zhuge*, Dehong Gao*, Deng-Ping Fan#, Linbo Jin, Ben Chen, Haoming Zhou, Minghui

248 Dec 04, 2022
Dynamical movement primitives (DMPs), probabilistic movement primitives (ProMPs), spatially coupled bimanual DMPs.

Movement Primitives Movement primitives are a common group of policy representations in robotics. There are many different types and variations. This

DFKI Robotics Innovation Center 63 Jan 06, 2023
Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection

DDMP-3D Pytorch implementation of Depth-conditioned Dynamic Message Propagation forMonocular 3D Object Detection, a paper on CVPR2021. Instroduction T

Li Wang 32 Nov 09, 2022
CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energy Management, 2020, PikaPika team

Citylearn Challenge This is the PyTorch implementation for PikaPika team, CityLearn Challenge Multi-Agent Reinforcement Learning for Intelligent Energ

bigAIdream projects 10 Oct 10, 2022
Extreme Rotation Estimation using Dense Correlation Volumes

Extreme Rotation Estimation using Dense Correlation Volumes This repository contains a PyTorch implementation of the paper: Extreme Rotation Estimatio

Ruojin Cai 29 Nov 18, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
TensorFlow implementation of AlexNet and its training and testing on ImageNet ILSVRC 2012 dataset

AlexNet training on ImageNet LSVRC 2012 This repository contains an implementation of AlexNet convolutional neural network and its training and testin

Matteo Dunnhofer 161 Nov 25, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
Out-of-Town Recommendation with Travel Intention Modeling (AAAI2021)

TrainOR_AAAI21 This is the official implementation of our AAAI'21 paper: Haoran Xin, Xinjiang Lu, Tong Xu, Hao Liu, Jingjing Gu, Dejing Dou, Hui Xiong

Jack Xin 13 Oct 19, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Code for paper "Learning to Reweight Examples for Robust Deep Learning"

learning-to-reweight-examples Code for paper Learning to Reweight Examples for Robust Deep Learning. [arxiv] Environment We tested the code on tensorf

Uber Research 261 Jan 01, 2023
Deep Sketch-guided Cartoon Video Inbetweening

Cartoon Video Inbetweening Paper | DOI | Video The source code of Deep Sketch-guided Cartoon Video Inbetweening by Xiaoyu Li, Bo Zhang, Jing Liao, Ped

Xiaoyu Li 37 Dec 22, 2022
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023